New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbie | GIF version |
Description: Conversion of implicit substitution to explicit substitution. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.) |
Ref | Expression |
---|---|
sbie.1 | ⊢ Ⅎxψ |
sbie.2 | ⊢ (x = y → (φ ↔ ψ)) |
Ref | Expression |
---|---|
sbie | ⊢ ([y / x]φ ↔ ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1554 | . . 3 ⊢ Ⅎx ⊤ | |
2 | sbie.1 | . . . 4 ⊢ Ⅎxψ | |
3 | 2 | a1i 10 | . . 3 ⊢ ( ⊤ → Ⅎxψ) |
4 | sbie.2 | . . . 4 ⊢ (x = y → (φ ↔ ψ)) | |
5 | 4 | a1i 10 | . . 3 ⊢ ( ⊤ → (x = y → (φ ↔ ψ))) |
6 | 1, 3, 5 | sbied 2036 | . 2 ⊢ ( ⊤ → ([y / x]φ ↔ ψ)) |
7 | 6 | trud 1323 | 1 ⊢ ([y / x]φ ↔ ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ⊤ wtru 1316 Ⅎwnf 1544 [wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
This theorem is referenced by: equsb3lem 2101 elsb1 2103 elsb2 2104 cbveu 2224 mo4f 2236 2mos 2283 bm1.1 2338 eqsb1lem 2453 clelsb1 2455 clelsb2 2456 cbvab 2472 cbvralf 2830 cbvreu 2834 sbralie 2849 cbvrab 2858 reu2 3025 sbcco2 3070 sbcie2g 3080 sbcel2gv 3107 sbcralt 3119 sbcralg 3121 sbcrexg 3122 sbcreug 3123 sbcel12g 3152 sbceqg 3153 cbvralcsf 3199 cbvreucsf 3201 cbvrabcsf 3202 sbss 3660 cbviota 4345 cbvopab1 4633 sbcbrg 4686 cbvmpt 5677 fvfullfunlem1 5862 |
Copyright terms: Public domain | W3C validator |