Proof of Theorem enmap2lem3
Step | Hyp | Ref
| Expression |
1 | | breldm 4911 |
. . . 4
⊢ (SWT → S ∈ dom W) |
2 | | enmap2lem3.1 |
. . . . . 6
⊢ W = (s ∈ (G
↑m a) ↦ (s ∘ ◡r)) |
3 | 2 | enmap2lem2 6064 |
. . . . 5
⊢ W Fn (G
↑m a) |
4 | | fndm 5182 |
. . . . 5
⊢ (W Fn (G
↑m a) → dom
W = (G
↑m a)) |
5 | 3, 4 | ax-mp 5 |
. . . 4
⊢ dom W = (G
↑m a) |
6 | 1, 5 | syl6eleq 2443 |
. . 3
⊢ (SWT → S ∈ (G
↑m a)) |
7 | | fnbrfvb 5358 |
. . . . . 6
⊢ ((W Fn (G
↑m a) ∧ S ∈ (G
↑m a)) →
((W ‘S) = T ↔
SWT)) |
8 | 3, 7 | mpan 651 |
. . . . 5
⊢ (S ∈ (G ↑m a) → ((W
‘S) = T ↔ SWT)) |
9 | | vex 2862 |
. . . . . . . . . . 11
⊢ r ∈
V |
10 | 9 | cnvex 5102 |
. . . . . . . . . 10
⊢ ◡r ∈ V |
11 | | coexg 4749 |
. . . . . . . . . 10
⊢ ((S ∈ (G ↑m a) ∧ ◡r ∈ V) → (S
∘ ◡r) ∈ V) |
12 | 10, 11 | mpan2 652 |
. . . . . . . . 9
⊢ (S ∈ (G ↑m a) → (S
∘ ◡r) ∈ V) |
13 | | coeq1 4874 |
. . . . . . . . . 10
⊢ (s = S →
(s ∘
◡r)
= (S ∘
◡r)) |
14 | 13, 2 | fvmptg 5698 |
. . . . . . . . 9
⊢ ((S ∈ (G ↑m a) ∧ (S ∘ ◡r) ∈ V) → (W
‘S) = (S ∘ ◡r)) |
15 | 12, 14 | mpdan 649 |
. . . . . . . 8
⊢ (S ∈ (G ↑m a) → (W
‘S) = (S ∘ ◡r)) |
16 | 15 | eqeq1d 2361 |
. . . . . . 7
⊢ (S ∈ (G ↑m a) → ((W
‘S) = T ↔ (S
∘ ◡r) =
T)) |
17 | | eqcom 2355 |
. . . . . . 7
⊢ ((S ∘ ◡r) =
T ↔ T = (S ∘ ◡r)) |
18 | 16, 17 | syl6bb 252 |
. . . . . 6
⊢ (S ∈ (G ↑m a) → ((W
‘S) = T ↔ T =
(S ∘
◡r))) |
19 | 18 | biimpd 198 |
. . . . 5
⊢ (S ∈ (G ↑m a) → ((W
‘S) = T → T =
(S ∘
◡r))) |
20 | 8, 19 | sylbird 226 |
. . . 4
⊢ (S ∈ (G ↑m a) → (SWT → T =
(S ∘
◡r))) |
21 | 6, 20 | mpcom 32 |
. . 3
⊢ (SWT → T =
(S ∘
◡r)) |
22 | 6, 21 | jca 518 |
. 2
⊢ (SWT → (S
∈ (G
↑m a) ∧ T = (S ∘ ◡r))) |
23 | | f1ococnv1 5310 |
. . . . . . 7
⊢ (r:a–1-1-onto→b →
(◡r
∘ r) = (
I ↾ a)) |
24 | 23 | coeq2d 4879 |
. . . . . 6
⊢ (r:a–1-1-onto→b →
(S ∘
(◡r
∘ r)) =
(S ∘ ( I
↾ a))) |
25 | 24 | adantr 451 |
. . . . 5
⊢ ((r:a–1-1-onto→b ∧ S ∈ (G
↑m a)) →
(S ∘
(◡r
∘ r)) =
(S ∘ ( I
↾ a))) |
26 | | elmapi 6016 |
. . . . . . 7
⊢ (S ∈ (G ↑m a) → S:a–→G) |
27 | | fcoi1 5240 |
. . . . . . 7
⊢ (S:a–→G
→ (S ∘ ( I ↾
a)) = S) |
28 | 26, 27 | syl 15 |
. . . . . 6
⊢ (S ∈ (G ↑m a) → (S
∘ ( I ↾
a)) = S) |
29 | 28 | adantl 452 |
. . . . 5
⊢ ((r:a–1-1-onto→b ∧ S ∈ (G
↑m a)) →
(S ∘ ( I
↾ a)) =
S) |
30 | 25, 29 | eqtr2d 2386 |
. . . 4
⊢ ((r:a–1-1-onto→b ∧ S ∈ (G
↑m a)) →
S = (S
∘ (◡r ∘ r))) |
31 | | coeq1 4874 |
. . . . . 6
⊢ (T = (S ∘ ◡r)
→ (T ∘ r) =
((S ∘
◡r)
∘ r)) |
32 | | coass 5097 |
. . . . . 6
⊢ ((S ∘ ◡r) ∘ r) =
(S ∘
(◡r
∘ r)) |
33 | 31, 32 | syl6eq 2401 |
. . . . 5
⊢ (T = (S ∘ ◡r)
→ (T ∘ r) =
(S ∘
(◡r
∘ r))) |
34 | 33 | eqeq2d 2364 |
. . . 4
⊢ (T = (S ∘ ◡r)
→ (S = (T ∘ r) ↔ S =
(S ∘
(◡r
∘ r)))) |
35 | 30, 34 | syl5ibrcom 213 |
. . 3
⊢ ((r:a–1-1-onto→b ∧ S ∈ (G
↑m a)) →
(T = (S
∘ ◡r)
→ S = (T ∘ r))) |
36 | 35 | expimpd 586 |
. 2
⊢ (r:a–1-1-onto→b →
((S ∈
(G ↑m a) ∧ T = (S ∘ ◡r))
→ S = (T ∘ r))) |
37 | 22, 36 | syl5 28 |
1
⊢ (r:a–1-1-onto→b →
(SWT →
S = (T
∘ r))) |