New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > equs5a | GIF version |
Description: A property related to substitution that unlike equs5 1996 doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.) |
Ref | Expression |
---|---|
equs5a | ⊢ (∃x(x = y ∧ ∀yφ) → ∀x(x = y → φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 1788 | . 2 ⊢ Ⅎx∀x(x = y → φ) | |
2 | ax-11 1746 | . . 3 ⊢ (x = y → (∀yφ → ∀x(x = y → φ))) | |
3 | 2 | imp 418 | . 2 ⊢ ((x = y ∧ ∀yφ) → ∀x(x = y → φ)) |
4 | 1, 3 | exlimi 1803 | 1 ⊢ (∃x(x = y ∧ ∀yφ) → ∀x(x = y → φ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 |
This theorem is referenced by: sb4a 1923 equs45f 1989 |
Copyright terms: Public domain | W3C validator |