| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > equsalhw | GIF version | ||
| Description: Weaker version of equsalh 1961 (requiring distinct variables) without using ax-12 1925. (Contributed by NM, 29-Nov-2015.) (Proof shortened by Wolf Lammen, 28-Dec-2017.) |
| Ref | Expression |
|---|---|
| equsalhw.1 | ⊢ (ψ → ∀xψ) |
| equsalhw.2 | ⊢ (x = y → (φ ↔ ψ)) |
| Ref | Expression |
|---|---|
| equsalhw | ⊢ (∀x(x = y → φ) ↔ ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equsalhw.1 | . . 3 ⊢ (ψ → ∀xψ) | |
| 2 | 1 | 19.23h 1802 | . 2 ⊢ (∀x(x = y → ψ) ↔ (∃x x = y → ψ)) |
| 3 | equsalhw.2 | . . . 4 ⊢ (x = y → (φ ↔ ψ)) | |
| 4 | 3 | pm5.74i 236 | . . 3 ⊢ ((x = y → φ) ↔ (x = y → ψ)) |
| 5 | 4 | albii 1566 | . 2 ⊢ (∀x(x = y → φ) ↔ ∀x(x = y → ψ)) |
| 6 | a9ev 1656 | . . 3 ⊢ ∃x x = y | |
| 7 | 6 | a1bi 327 | . 2 ⊢ (ψ ↔ (∃x x = y → ψ)) |
| 8 | 2, 5, 7 | 3bitr4i 268 | 1 ⊢ (∀x(x = y → φ) ↔ ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 ∃wex 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: dvelimhw 1849 |
| Copyright terms: Public domain | W3C validator |