New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > equsalhw | GIF version |
Description: Weaker version of equsalh 1961 (requiring distinct variables) without using ax-12 1925. (Contributed by NM, 29-Nov-2015.) (Proof shortened by Wolf Lammen, 28-Dec-2017.) |
Ref | Expression |
---|---|
equsalhw.1 | ⊢ (ψ → ∀xψ) |
equsalhw.2 | ⊢ (x = y → (φ ↔ ψ)) |
Ref | Expression |
---|---|
equsalhw | ⊢ (∀x(x = y → φ) ↔ ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equsalhw.1 | . . 3 ⊢ (ψ → ∀xψ) | |
2 | 1 | 19.23h 1802 | . 2 ⊢ (∀x(x = y → ψ) ↔ (∃x x = y → ψ)) |
3 | equsalhw.2 | . . . 4 ⊢ (x = y → (φ ↔ ψ)) | |
4 | 3 | pm5.74i 236 | . . 3 ⊢ ((x = y → φ) ↔ (x = y → ψ)) |
5 | 4 | albii 1566 | . 2 ⊢ (∀x(x = y → φ) ↔ ∀x(x = y → ψ)) |
6 | a9ev 1656 | . . 3 ⊢ ∃x x = y | |
7 | 6 | a1bi 327 | . 2 ⊢ (ψ ↔ (∃x x = y → ψ)) |
8 | 2, 5, 7 | 3bitr4i 268 | 1 ⊢ (∀x(x = y → φ) ↔ ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
This theorem is referenced by: dvelimhw 1849 |
Copyright terms: Public domain | W3C validator |