New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dvelimhw | GIF version |
Description: Proof of dvelimh 1964 without using ax-12 1925 but with additional distinct variable conditions. (Contributed by Andrew Salmon, 21-Jul-2011.) (Revised by NM, 1-Aug-2017.) |
Ref | Expression |
---|---|
dvelimhw.1 | ⊢ (φ → ∀xφ) |
dvelimhw.2 | ⊢ (ψ → ∀zψ) |
dvelimhw.3 | ⊢ (z = y → (φ ↔ ψ)) |
dvelimhw.4 | ⊢ (¬ ∀x x = y → (y = z → ∀x y = z)) |
Ref | Expression |
---|---|
dvelimhw | ⊢ (¬ ∀x x = y → (ψ → ∀xψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1616 | . . 3 ⊢ (¬ ∀x x = y → ∀z ¬ ∀x x = y) | |
2 | hbn1 1730 | . . . 4 ⊢ (¬ ∀x x = y → ∀x ¬ ∀x x = y) | |
3 | equcomi 1679 | . . . . 5 ⊢ (z = y → y = z) | |
4 | dvelimhw.4 | . . . . 5 ⊢ (¬ ∀x x = y → (y = z → ∀x y = z)) | |
5 | equcomi 1679 | . . . . . 6 ⊢ (y = z → z = y) | |
6 | 5 | alimi 1559 | . . . . 5 ⊢ (∀x y = z → ∀x z = y) |
7 | 3, 4, 6 | syl56 30 | . . . 4 ⊢ (¬ ∀x x = y → (z = y → ∀x z = y)) |
8 | dvelimhw.1 | . . . . 5 ⊢ (φ → ∀xφ) | |
9 | 8 | a1i 10 | . . . 4 ⊢ (¬ ∀x x = y → (φ → ∀xφ)) |
10 | 2, 7, 9 | hbimd 1815 | . . 3 ⊢ (¬ ∀x x = y → ((z = y → φ) → ∀x(z = y → φ))) |
11 | 1, 10 | hbald 1740 | . 2 ⊢ (¬ ∀x x = y → (∀z(z = y → φ) → ∀x∀z(z = y → φ))) |
12 | dvelimhw.2 | . . 3 ⊢ (ψ → ∀zψ) | |
13 | dvelimhw.3 | . . 3 ⊢ (z = y → (φ ↔ ψ)) | |
14 | 12, 13 | equsalhw 1838 | . 2 ⊢ (∀z(z = y → φ) ↔ ψ) |
15 | 14 | albii 1566 | . 2 ⊢ (∀x∀z(z = y → φ) ↔ ∀xψ) |
16 | 11, 14, 15 | 3imtr3g 260 | 1 ⊢ (¬ ∀x x = y → (ψ → ∀xψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
This theorem is referenced by: ax12olem6 1932 |
Copyright terms: Public domain | W3C validator |