NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  2albiim GIF version

Theorem 2albiim 1612
Description: Split a biconditional and distribute 2 quantifiers. (Contributed by NM, 3-Feb-2005.)
Assertion
Ref Expression
2albiim (xy(φψ) ↔ (xy(φψ) xy(ψφ)))

Proof of Theorem 2albiim
StepHypRef Expression
1 albiim 1611 . . 3 (y(φψ) ↔ (y(φψ) y(ψφ)))
21albii 1566 . 2 (xy(φψ) ↔ x(y(φψ) y(ψφ)))
3 19.26 1593 . 2 (x(y(φψ) y(ψφ)) ↔ (xy(φψ) xy(ψφ)))
42, 3bitri 240 1 (xy(φψ) ↔ (xy(φψ) xy(ψφ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  sbnf2  2108  2eu6  2289  eqrel  4846  eqopr  4848
  Copyright terms: Public domain W3C validator