New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > exsb | GIF version |
Description: An equivalent expression for existence. (Contributed by NM, 2-Feb-2005.) |
Ref | Expression |
---|---|
exsb | ⊢ (∃xφ ↔ ∃y∀x(x = y → φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . 2 ⊢ Ⅎyφ | |
2 | nfa1 1788 | . 2 ⊢ Ⅎx∀x(x = y → φ) | |
3 | ax11v 2096 | . . 3 ⊢ (x = y → (φ → ∀x(x = y → φ))) | |
4 | sp 1747 | . . . 4 ⊢ (∀x(x = y → φ) → (x = y → φ)) | |
5 | 4 | com12 27 | . . 3 ⊢ (x = y → (∀x(x = y → φ) → φ)) |
6 | 3, 5 | impbid 183 | . 2 ⊢ (x = y → (φ ↔ ∀x(x = y → φ))) |
7 | 1, 2, 6 | cbvex 1985 | 1 ⊢ (∃xφ ↔ ∃y∀x(x = y → φ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: 2exsb 2132 |
Copyright terms: Public domain | W3C validator |