NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  exsimpl GIF version

Theorem exsimpl 1592
Description: Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
exsimpl (x(φ ψ) → xφ)

Proof of Theorem exsimpl
StepHypRef Expression
1 simpl 443 . 2 ((φ ψ) → φ)
21eximi 1576 1 (x(φ ψ) → xφ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358  wex 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542
This theorem is referenced by:  19.40  1609  euex  2227  moexex  2273  elex  2868  sbc5  3071  r19.2zb  3641
  Copyright terms: Public domain W3C validator