| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > sbc5 | GIF version | ||
| Description: An equivalence for class substitution. (Contributed by NM, 23-Aug-1993.) (Revised by Mario Carneiro, 12-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbc5 | ⊢ ([̣A / x]̣φ ↔ ∃x(x = A ∧ φ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex 3056 | . 2 ⊢ ([̣A / x]̣φ → A ∈ V) | |
| 2 | exsimpl 1592 | . . 3 ⊢ (∃x(x = A ∧ φ) → ∃x x = A) | |
| 3 | isset 2864 | . . 3 ⊢ (A ∈ V ↔ ∃x x = A) | |
| 4 | 2, 3 | sylibr 203 | . 2 ⊢ (∃x(x = A ∧ φ) → A ∈ V) |
| 5 | dfsbcq2 3050 | . . 3 ⊢ (y = A → ([y / x]φ ↔ [̣A / x]̣φ)) | |
| 6 | eqeq2 2362 | . . . . 5 ⊢ (y = A → (x = y ↔ x = A)) | |
| 7 | 6 | anbi1d 685 | . . . 4 ⊢ (y = A → ((x = y ∧ φ) ↔ (x = A ∧ φ))) |
| 8 | 7 | exbidv 1626 | . . 3 ⊢ (y = A → (∃x(x = y ∧ φ) ↔ ∃x(x = A ∧ φ))) |
| 9 | sb5 2100 | . . 3 ⊢ ([y / x]φ ↔ ∃x(x = y ∧ φ)) | |
| 10 | 5, 8, 9 | vtoclbg 2916 | . 2 ⊢ (A ∈ V → ([̣A / x]̣φ ↔ ∃x(x = A ∧ φ))) |
| 11 | 1, 4, 10 | pm5.21nii 342 | 1 ⊢ ([̣A / x]̣φ ↔ ∃x(x = A ∧ φ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 [wsb 1648 ∈ wcel 1710 Vcvv 2860 [̣wsbc 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sbc 3048 |
| This theorem is referenced by: sbc6g 3072 sbc7 3074 sbciegft 3077 sbccomlem 3117 csb2 3139 rexsns 3765 |
| Copyright terms: Public domain | W3C validator |