NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  enmap2lem5 GIF version

Theorem enmap2lem5 6068
Description: Lemma for enmap2 6069. Calculate the range of W. (Contributed by SF, 26-Feb-2015.)
Hypothesis
Ref Expression
enmap2lem5.1 W = (s (Gm a) (s r))
Assertion
Ref Expression
enmap2lem5 (r:a1-1-ontob → ran W = (Gm b))
Distinct variable groups:   s,a   G,s   s,r
Allowed substitution hints:   G(r,a,b)   W(s,r,a,b)

Proof of Theorem enmap2lem5
Dummy variable p is distinct from all other variables.
StepHypRef Expression
1 enmap2lem5.1 . . . 4 W = (s (Gm a) (s r))
21enmap2lem2 6065 . . 3 W Fn (Gm a)
3 coeq1 4875 . . . . . . 7 (s = p → (s r) = (p r))
4 vex 2863 . . . . . . . 8 p V
5 vex 2863 . . . . . . . . 9 r V
65cnvex 5103 . . . . . . . 8 r V
74, 6coex 4751 . . . . . . 7 (p r) V
83, 1, 7fvmpt 5701 . . . . . 6 (p (Gm a) → (Wp) = (p r))
98adantl 452 . . . . 5 ((r:a1-1-ontob p (Gm a)) → (Wp) = (p r))
10 elmapi 6017 . . . . . . 7 (p (Gm a) → p:a–→G)
11 f1ocnv 5300 . . . . . . . 8 (r:a1-1-ontobr:b1-1-ontoa)
12 f1of 5288 . . . . . . . 8 (r:b1-1-ontoar:b–→a)
1311, 12syl 15 . . . . . . 7 (r:a1-1-ontobr:b–→a)
14 fco 5232 . . . . . . 7 ((p:a–→G r:b–→a) → (p r):b–→G)
1510, 13, 14syl2anr 464 . . . . . 6 ((r:a1-1-ontob p (Gm a)) → (p r):b–→G)
16 elovex1 5650 . . . . . . . 8 (p (Gm a) → G V)
17 vex 2863 . . . . . . . . 9 b V
18 elmapg 6013 . . . . . . . . 9 ((G V b V (p r) V) → ((p r) (Gm b) ↔ (p r):b–→G))
1917, 7, 18mp3an23 1269 . . . . . . . 8 (G V → ((p r) (Gm b) ↔ (p r):b–→G))
2016, 19syl 15 . . . . . . 7 (p (Gm a) → ((p r) (Gm b) ↔ (p r):b–→G))
2120adantl 452 . . . . . 6 ((r:a1-1-ontob p (Gm a)) → ((p r) (Gm b) ↔ (p r):b–→G))
2215, 21mpbird 223 . . . . 5 ((r:a1-1-ontob p (Gm a)) → (p r) (Gm b))
239, 22eqeltrd 2427 . . . 4 ((r:a1-1-ontob p (Gm a)) → (Wp) (Gm b))
2423ralrimiva 2698 . . 3 (r:a1-1-ontobp (Gm a)(Wp) (Gm b))
25 fnfvrnss 5430 . . 3 ((W Fn (Gm a) p (Gm a)(Wp) (Gm b)) → ran W (Gm b))
262, 24, 25sylancr 644 . 2 (r:a1-1-ontob → ran W (Gm b))
27 elmapi 6017 . . . . . . . . . 10 (p (Gm b) → p:b–→G)
28 f1of 5288 . . . . . . . . . 10 (r:a1-1-ontobr:a–→b)
29 fco 5232 . . . . . . . . . 10 ((p:b–→G r:a–→b) → (p r):a–→G)
3027, 28, 29syl2anr 464 . . . . . . . . 9 ((r:a1-1-ontob p (Gm b)) → (p r):a–→G)
31 elovex1 5650 . . . . . . . . . . 11 (p (Gm b) → G V)
32 vex 2863 . . . . . . . . . . . 12 a V
334, 5coex 4751 . . . . . . . . . . . 12 (p r) V
34 elmapg 6013 . . . . . . . . . . . 12 ((G V a V (p r) V) → ((p r) (Gm a) ↔ (p r):a–→G))
3532, 33, 34mp3an23 1269 . . . . . . . . . . 11 (G V → ((p r) (Gm a) ↔ (p r):a–→G))
3631, 35syl 15 . . . . . . . . . 10 (p (Gm b) → ((p r) (Gm a) ↔ (p r):a–→G))
3736adantl 452 . . . . . . . . 9 ((r:a1-1-ontob p (Gm b)) → ((p r) (Gm a) ↔ (p r):a–→G))
3830, 37mpbird 223 . . . . . . . 8 ((r:a1-1-ontob p (Gm b)) → (p r) (Gm a))
39 coeq1 4875 . . . . . . . . . 10 (s = (p r) → (s r) = ((p r) r))
40 coass 5098 . . . . . . . . . 10 ((p r) r) = (p (r r))
4139, 40syl6eq 2401 . . . . . . . . 9 (s = (p r) → (s r) = (p (r r)))
425, 6coex 4751 . . . . . . . . . 10 (r r) V
434, 42coex 4751 . . . . . . . . 9 (p (r r)) V
4441, 1, 43fvmpt 5701 . . . . . . . 8 ((p r) (Gm a) → (W ‘(p r)) = (p (r r)))
4538, 44syl 15 . . . . . . 7 ((r:a1-1-ontob p (Gm b)) → (W ‘(p r)) = (p (r r)))
46 f1ococnv2 5310 . . . . . . . . 9 (r:a1-1-ontob → (r r) = ( I b))
4746coeq2d 4880 . . . . . . . 8 (r:a1-1-ontob → (p (r r)) = (p ( I b)))
48 fcoi1 5241 . . . . . . . . 9 (p:b–→G → (p ( I b)) = p)
4927, 48syl 15 . . . . . . . 8 (p (Gm b) → (p ( I b)) = p)
5047, 49sylan9eq 2405 . . . . . . 7 ((r:a1-1-ontob p (Gm b)) → (p (r r)) = p)
5145, 50eqtrd 2385 . . . . . 6 ((r:a1-1-ontob p (Gm b)) → (W ‘(p r)) = p)
52 fnbrfvb 5359 . . . . . . 7 ((W Fn (Gm a) (p r) (Gm a)) → ((W ‘(p r)) = p ↔ (p r)Wp))
532, 38, 52sylancr 644 . . . . . 6 ((r:a1-1-ontob p (Gm b)) → ((W ‘(p r)) = p ↔ (p r)Wp))
5451, 53mpbid 201 . . . . 5 ((r:a1-1-ontob p (Gm b)) → (p r)Wp)
55 brelrn 4961 . . . . 5 ((p r)Wpp ran W)
5654, 55syl 15 . . . 4 ((r:a1-1-ontob p (Gm b)) → p ran W)
5756ex 423 . . 3 (r:a1-1-ontob → (p (Gm b) → p ran W))
5857ssrdv 3279 . 2 (r:a1-1-ontob → (Gm b) ran W)
5926, 58eqssd 3290 1 (r:a1-1-ontob → ran W = (Gm b))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   = wceq 1642   wcel 1710  wral 2615  Vcvv 2860   wss 3258   class class class wbr 4640   ccom 4722   I cid 4764  ccnv 4772  ran crn 4774   cres 4775   Fn wfn 4777  –→wf 4778  1-1-ontowf1o 4781  cfv 4782  (class class class)co 5526   cmpt 5652  m cmap 6000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-fv 4796  df-2nd 4798  df-ov 5527  df-oprab 5529  df-mpt 5653  df-mpt2 5655  df-txp 5737  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-map 6002
This theorem is referenced by:  enmap2  6069
  Copyright terms: Public domain W3C validator