Step | Hyp | Ref
| Expression |
1 | | enmap2lem5.1 |
. . . 4
⊢ W = (s ∈ (G
↑m a) ↦ (s ∘ ◡r)) |
2 | 1 | enmap2lem2 6065 |
. . 3
⊢ W Fn (G
↑m a) |
3 | | coeq1 4875 |
. . . . . . 7
⊢ (s = p →
(s ∘
◡r)
= (p ∘
◡r)) |
4 | | vex 2863 |
. . . . . . . 8
⊢ p ∈
V |
5 | | vex 2863 |
. . . . . . . . 9
⊢ r ∈
V |
6 | 5 | cnvex 5103 |
. . . . . . . 8
⊢ ◡r ∈ V |
7 | 4, 6 | coex 4751 |
. . . . . . 7
⊢ (p ∘ ◡r) ∈ V |
8 | 3, 1, 7 | fvmpt 5701 |
. . . . . 6
⊢ (p ∈ (G ↑m a) → (W
‘p) = (p ∘ ◡r)) |
9 | 8 | adantl 452 |
. . . . 5
⊢ ((r:a–1-1-onto→b ∧ p ∈ (G
↑m a)) →
(W ‘p) = (p ∘ ◡r)) |
10 | | elmapi 6017 |
. . . . . . 7
⊢ (p ∈ (G ↑m a) → p:a–→G) |
11 | | f1ocnv 5300 |
. . . . . . . 8
⊢ (r:a–1-1-onto→b →
◡r:b–1-1-onto→a) |
12 | | f1of 5288 |
. . . . . . . 8
⊢ (◡r:b–1-1-onto→a →
◡r:b–→a) |
13 | 11, 12 | syl 15 |
. . . . . . 7
⊢ (r:a–1-1-onto→b →
◡r:b–→a) |
14 | | fco 5232 |
. . . . . . 7
⊢ ((p:a–→G
∧ ◡r:b–→a)
→ (p ∘ ◡r):b–→G) |
15 | 10, 13, 14 | syl2anr 464 |
. . . . . 6
⊢ ((r:a–1-1-onto→b ∧ p ∈ (G
↑m a)) →
(p ∘
◡r):b–→G) |
16 | | elovex1 5650 |
. . . . . . . 8
⊢ (p ∈ (G ↑m a) → G
∈ V) |
17 | | vex 2863 |
. . . . . . . . 9
⊢ b ∈
V |
18 | | elmapg 6013 |
. . . . . . . . 9
⊢ ((G ∈ V ∧ b ∈ V ∧ (p ∘ ◡r) ∈ V) → ((p
∘ ◡r) ∈ (G
↑m b) ↔
(p ∘
◡r):b–→G)) |
19 | 17, 7, 18 | mp3an23 1269 |
. . . . . . . 8
⊢ (G ∈ V →
((p ∘
◡r)
∈ (G
↑m b) ↔
(p ∘
◡r):b–→G)) |
20 | 16, 19 | syl 15 |
. . . . . . 7
⊢ (p ∈ (G ↑m a) → ((p
∘ ◡r) ∈ (G
↑m b) ↔
(p ∘
◡r):b–→G)) |
21 | 20 | adantl 452 |
. . . . . 6
⊢ ((r:a–1-1-onto→b ∧ p ∈ (G
↑m a)) →
((p ∘
◡r)
∈ (G
↑m b) ↔
(p ∘
◡r):b–→G)) |
22 | 15, 21 | mpbird 223 |
. . . . 5
⊢ ((r:a–1-1-onto→b ∧ p ∈ (G
↑m a)) →
(p ∘
◡r)
∈ (G
↑m b)) |
23 | 9, 22 | eqeltrd 2427 |
. . . 4
⊢ ((r:a–1-1-onto→b ∧ p ∈ (G
↑m a)) →
(W ‘p) ∈ (G ↑m b)) |
24 | 23 | ralrimiva 2698 |
. . 3
⊢ (r:a–1-1-onto→b →
∀p
∈ (G
↑m a)(W ‘p)
∈ (G
↑m b)) |
25 | | fnfvrnss 5430 |
. . 3
⊢ ((W Fn (G
↑m a) ∧ ∀p ∈ (G ↑m a)(W
‘p) ∈ (G
↑m b)) → ran
W ⊆
(G ↑m b)) |
26 | 2, 24, 25 | sylancr 644 |
. 2
⊢ (r:a–1-1-onto→b →
ran W ⊆
(G ↑m b)) |
27 | | elmapi 6017 |
. . . . . . . . . 10
⊢ (p ∈ (G ↑m b) → p:b–→G) |
28 | | f1of 5288 |
. . . . . . . . . 10
⊢ (r:a–1-1-onto→b →
r:a–→b) |
29 | | fco 5232 |
. . . . . . . . . 10
⊢ ((p:b–→G
∧ r:a–→b)
→ (p ∘ r):a–→G) |
30 | 27, 28, 29 | syl2anr 464 |
. . . . . . . . 9
⊢ ((r:a–1-1-onto→b ∧ p ∈ (G
↑m b)) →
(p ∘
r):a–→G) |
31 | | elovex1 5650 |
. . . . . . . . . . 11
⊢ (p ∈ (G ↑m b) → G
∈ V) |
32 | | vex 2863 |
. . . . . . . . . . . 12
⊢ a ∈
V |
33 | 4, 5 | coex 4751 |
. . . . . . . . . . . 12
⊢ (p ∘ r) ∈
V |
34 | | elmapg 6013 |
. . . . . . . . . . . 12
⊢ ((G ∈ V ∧ a ∈ V ∧ (p ∘ r) ∈ V) →
((p ∘
r) ∈
(G ↑m a) ↔ (p
∘ r):a–→G)) |
35 | 32, 33, 34 | mp3an23 1269 |
. . . . . . . . . . 11
⊢ (G ∈ V →
((p ∘
r) ∈
(G ↑m a) ↔ (p
∘ r):a–→G)) |
36 | 31, 35 | syl 15 |
. . . . . . . . . 10
⊢ (p ∈ (G ↑m b) → ((p
∘ r)
∈ (G
↑m a) ↔
(p ∘
r):a–→G)) |
37 | 36 | adantl 452 |
. . . . . . . . 9
⊢ ((r:a–1-1-onto→b ∧ p ∈ (G
↑m b)) →
((p ∘
r) ∈
(G ↑m a) ↔ (p
∘ r):a–→G)) |
38 | 30, 37 | mpbird 223 |
. . . . . . . 8
⊢ ((r:a–1-1-onto→b ∧ p ∈ (G
↑m b)) →
(p ∘
r) ∈
(G ↑m a)) |
39 | | coeq1 4875 |
. . . . . . . . . 10
⊢ (s = (p ∘ r) →
(s ∘
◡r)
= ((p ∘
r) ∘
◡r)) |
40 | | coass 5098 |
. . . . . . . . . 10
⊢ ((p ∘ r) ∘ ◡r) =
(p ∘
(r ∘
◡r)) |
41 | 39, 40 | syl6eq 2401 |
. . . . . . . . 9
⊢ (s = (p ∘ r) →
(s ∘
◡r)
= (p ∘
(r ∘
◡r))) |
42 | 5, 6 | coex 4751 |
. . . . . . . . . 10
⊢ (r ∘ ◡r) ∈ V |
43 | 4, 42 | coex 4751 |
. . . . . . . . 9
⊢ (p ∘ (r ∘ ◡r))
∈ V |
44 | 41, 1, 43 | fvmpt 5701 |
. . . . . . . 8
⊢ ((p ∘ r) ∈ (G ↑m a) → (W
‘(p ∘ r)) =
(p ∘
(r ∘
◡r))) |
45 | 38, 44 | syl 15 |
. . . . . . 7
⊢ ((r:a–1-1-onto→b ∧ p ∈ (G
↑m b)) →
(W ‘(p ∘ r)) = (p ∘ (r ∘ ◡r))) |
46 | | f1ococnv2 5310 |
. . . . . . . . 9
⊢ (r:a–1-1-onto→b →
(r ∘
◡r)
= ( I ↾ b)) |
47 | 46 | coeq2d 4880 |
. . . . . . . 8
⊢ (r:a–1-1-onto→b →
(p ∘
(r ∘
◡r)) = (p ∘ ( I ↾
b))) |
48 | | fcoi1 5241 |
. . . . . . . . 9
⊢ (p:b–→G
→ (p ∘ ( I ↾
b)) = p) |
49 | 27, 48 | syl 15 |
. . . . . . . 8
⊢ (p ∈ (G ↑m b) → (p
∘ ( I ↾
b)) = p) |
50 | 47, 49 | sylan9eq 2405 |
. . . . . . 7
⊢ ((r:a–1-1-onto→b ∧ p ∈ (G
↑m b)) →
(p ∘
(r ∘
◡r)) = p) |
51 | 45, 50 | eqtrd 2385 |
. . . . . 6
⊢ ((r:a–1-1-onto→b ∧ p ∈ (G
↑m b)) →
(W ‘(p ∘ r)) = p) |
52 | | fnbrfvb 5359 |
. . . . . . 7
⊢ ((W Fn (G
↑m a) ∧ (p ∘ r) ∈ (G
↑m a)) →
((W ‘(p ∘ r)) = p ↔
(p ∘
r)Wp)) |
53 | 2, 38, 52 | sylancr 644 |
. . . . . 6
⊢ ((r:a–1-1-onto→b ∧ p ∈ (G
↑m b)) →
((W ‘(p ∘ r)) = p ↔
(p ∘
r)Wp)) |
54 | 51, 53 | mpbid 201 |
. . . . 5
⊢ ((r:a–1-1-onto→b ∧ p ∈ (G
↑m b)) →
(p ∘
r)Wp) |
55 | | brelrn 4961 |
. . . . 5
⊢ ((p ∘ r)Wp → p ∈ ran W) |
56 | 54, 55 | syl 15 |
. . . 4
⊢ ((r:a–1-1-onto→b ∧ p ∈ (G
↑m b)) →
p ∈ ran
W) |
57 | 56 | ex 423 |
. . 3
⊢ (r:a–1-1-onto→b →
(p ∈
(G ↑m b) → p
∈ ran W)) |
58 | 57 | ssrdv 3279 |
. 2
⊢ (r:a–1-1-onto→b →
(G ↑m b) ⊆ ran W) |
59 | 26, 58 | eqssd 3290 |
1
⊢ (r:a–1-1-onto→b →
ran W = (G ↑m b)) |