New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 1cnc | GIF version |
Description: Cardinal one is a cardinal number. Corollary 2 to theorem XI.2.8 of [Rosser] p. 373. (Contributed by SF, 24-Feb-2015.) |
Ref | Expression |
---|---|
1cnc | ⊢ 1c ∈ NC |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfec2 5949 | . . . 4 ⊢ [{y}] ≈ = {z ∣ {y} ≈ z} | |
2 | df-nc 6102 | . . . 4 ⊢ Nc {y} = [{y}] ≈ | |
3 | el1c 4140 | . . . . . 6 ⊢ (z ∈ 1c ↔ ∃x z = {x}) | |
4 | vex 2863 | . . . . . . . . . 10 ⊢ y ∈ V | |
5 | vex 2863 | . . . . . . . . . 10 ⊢ x ∈ V | |
6 | en2sn 6048 | . . . . . . . . . 10 ⊢ ((y ∈ V ∧ x ∈ V) → {y} ≈ {x}) | |
7 | 4, 5, 6 | mp2an 653 | . . . . . . . . 9 ⊢ {y} ≈ {x} |
8 | breq2 4644 | . . . . . . . . 9 ⊢ (z = {x} → ({y} ≈ z ↔ {y} ≈ {x})) | |
9 | 7, 8 | mpbiri 224 | . . . . . . . 8 ⊢ (z = {x} → {y} ≈ z) |
10 | 9 | exlimiv 1634 | . . . . . . 7 ⊢ (∃x z = {x} → {y} ≈ z) |
11 | bren 6031 | . . . . . . . 8 ⊢ ({y} ≈ z ↔ ∃f f:{y}–1-1-onto→z) | |
12 | f1of 5288 | . . . . . . . . . 10 ⊢ (f:{y}–1-1-onto→z → f:{y}–→z) | |
13 | f1ofo 5294 | . . . . . . . . . . 11 ⊢ (f:{y}–1-1-onto→z → f:{y}–onto→z) | |
14 | forn 5273 | . . . . . . . . . . 11 ⊢ (f:{y}–onto→z → ran f = z) | |
15 | 13, 14 | syl 15 | . . . . . . . . . 10 ⊢ (f:{y}–1-1-onto→z → ran f = z) |
16 | 4 | fsn2 5435 | . . . . . . . . . . 11 ⊢ (f:{y}–→z ↔ ((f ‘y) ∈ z ∧ f = {〈y, (f ‘y)〉})) |
17 | rneq 4957 | . . . . . . . . . . . . . . 15 ⊢ (f = {〈y, (f ‘y)〉} → ran f = ran {〈y, (f ‘y)〉}) | |
18 | 4 | rnsnop 5076 | . . . . . . . . . . . . . . 15 ⊢ ran {〈y, (f ‘y)〉} = {(f ‘y)} |
19 | 17, 18 | syl6eq 2401 | . . . . . . . . . . . . . 14 ⊢ (f = {〈y, (f ‘y)〉} → ran f = {(f ‘y)}) |
20 | 19 | eqeq1d 2361 | . . . . . . . . . . . . 13 ⊢ (f = {〈y, (f ‘y)〉} → (ran f = z ↔ {(f ‘y)} = z)) |
21 | fvex 5340 | . . . . . . . . . . . . . . 15 ⊢ (f ‘y) ∈ V | |
22 | sneq 3745 | . . . . . . . . . . . . . . . 16 ⊢ (x = (f ‘y) → {x} = {(f ‘y)}) | |
23 | 22 | eqeq2d 2364 | . . . . . . . . . . . . . . 15 ⊢ (x = (f ‘y) → (z = {x} ↔ z = {(f ‘y)})) |
24 | 21, 23 | spcev 2947 | . . . . . . . . . . . . . 14 ⊢ (z = {(f ‘y)} → ∃x z = {x}) |
25 | 24 | eqcoms 2356 | . . . . . . . . . . . . 13 ⊢ ({(f ‘y)} = z → ∃x z = {x}) |
26 | 20, 25 | syl6bi 219 | . . . . . . . . . . . 12 ⊢ (f = {〈y, (f ‘y)〉} → (ran f = z → ∃x z = {x})) |
27 | 26 | adantl 452 | . . . . . . . . . . 11 ⊢ (((f ‘y) ∈ z ∧ f = {〈y, (f ‘y)〉}) → (ran f = z → ∃x z = {x})) |
28 | 16, 27 | sylbi 187 | . . . . . . . . . 10 ⊢ (f:{y}–→z → (ran f = z → ∃x z = {x})) |
29 | 12, 15, 28 | sylc 56 | . . . . . . . . 9 ⊢ (f:{y}–1-1-onto→z → ∃x z = {x}) |
30 | 29 | exlimiv 1634 | . . . . . . . 8 ⊢ (∃f f:{y}–1-1-onto→z → ∃x z = {x}) |
31 | 11, 30 | sylbi 187 | . . . . . . 7 ⊢ ({y} ≈ z → ∃x z = {x}) |
32 | 10, 31 | impbii 180 | . . . . . 6 ⊢ (∃x z = {x} ↔ {y} ≈ z) |
33 | 3, 32 | bitri 240 | . . . . 5 ⊢ (z ∈ 1c ↔ {y} ≈ z) |
34 | 33 | abbi2i 2465 | . . . 4 ⊢ 1c = {z ∣ {y} ≈ z} |
35 | 1, 2, 34 | 3eqtr4ri 2384 | . . 3 ⊢ 1c = Nc {y} |
36 | snex 4112 | . . . 4 ⊢ {y} ∈ V | |
37 | nceq 6109 | . . . . 5 ⊢ (x = {y} → Nc x = Nc {y}) | |
38 | 37 | eqeq2d 2364 | . . . 4 ⊢ (x = {y} → (1c = Nc x ↔ 1c = Nc {y})) |
39 | 36, 38 | spcev 2947 | . . 3 ⊢ (1c = Nc {y} → ∃x1c = Nc x) |
40 | 35, 39 | ax-mp 5 | . 2 ⊢ ∃x1c = Nc x |
41 | elncs 6120 | . 2 ⊢ (1c ∈ NC ↔ ∃x1c = Nc x) | |
42 | 40, 41 | mpbir 200 | 1 ⊢ 1c ∈ NC |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 {cab 2339 Vcvv 2860 {csn 3738 1cc1c 4135 〈cop 4562 class class class wbr 4640 ran crn 4774 –→wf 4778 –onto→wfo 4780 –1-1-onto→wf1o 4781 ‘cfv 4782 [cec 5946 ≈ cen 6029 NC cncs 6089 Nc cnc 6092 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-fv 4796 df-2nd 4798 df-txp 5737 df-ins2 5751 df-ins3 5753 df-image 5755 df-ins4 5757 df-si3 5759 df-funs 5761 df-fns 5763 df-ec 5948 df-qs 5952 df-en 6030 df-ncs 6099 df-nc 6102 |
This theorem is referenced by: df1c3 6141 peano2nc 6146 tc1c 6166 tc2c 6167 ce0nn 6181 nc0suc 6218 leconnnc 6219 ncslemuc 6256 nnltp1c 6263 ncslesuc 6268 nmembers1lem2 6270 nmembers1lem3 6271 nmembers1 6272 nnc3n3p1 6279 nchoicelem1 6290 nchoicelem2 6291 nchoicelem13 6302 nchoicelem14 6303 nchoicelem17 6306 |
Copyright terms: Public domain | W3C validator |