New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > isores2 | GIF version |
Description: An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013.) |
Ref | Expression |
---|---|
isores2 | ⊢ (H Isom R, S (A, B) ↔ H Isom R, (S ∩ (B × B))(A, B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1of 5288 | . . . . . . . 8 ⊢ (H:A–1-1-onto→B → H:A–→B) | |
2 | ffvelrn 5416 | . . . . . . . . . 10 ⊢ ((H:A–→B ∧ x ∈ A) → (H ‘x) ∈ B) | |
3 | 2 | adantrr 697 | . . . . . . . . 9 ⊢ ((H:A–→B ∧ (x ∈ A ∧ y ∈ A)) → (H ‘x) ∈ B) |
4 | ffvelrn 5416 | . . . . . . . . . 10 ⊢ ((H:A–→B ∧ y ∈ A) → (H ‘y) ∈ B) | |
5 | 4 | adantrl 696 | . . . . . . . . 9 ⊢ ((H:A–→B ∧ (x ∈ A ∧ y ∈ A)) → (H ‘y) ∈ B) |
6 | brinxp 4837 | . . . . . . . . 9 ⊢ (((H ‘x) ∈ B ∧ (H ‘y) ∈ B) → ((H ‘x)S(H ‘y) ↔ (H ‘x)(S ∩ (B × B))(H ‘y))) | |
7 | 3, 5, 6 | syl2anc 642 | . . . . . . . 8 ⊢ ((H:A–→B ∧ (x ∈ A ∧ y ∈ A)) → ((H ‘x)S(H ‘y) ↔ (H ‘x)(S ∩ (B × B))(H ‘y))) |
8 | 1, 7 | sylan 457 | . . . . . . 7 ⊢ ((H:A–1-1-onto→B ∧ (x ∈ A ∧ y ∈ A)) → ((H ‘x)S(H ‘y) ↔ (H ‘x)(S ∩ (B × B))(H ‘y))) |
9 | 8 | anassrs 629 | . . . . . 6 ⊢ (((H:A–1-1-onto→B ∧ x ∈ A) ∧ y ∈ A) → ((H ‘x)S(H ‘y) ↔ (H ‘x)(S ∩ (B × B))(H ‘y))) |
10 | 9 | bibi2d 309 | . . . . 5 ⊢ (((H:A–1-1-onto→B ∧ x ∈ A) ∧ y ∈ A) → ((xRy ↔ (H ‘x)S(H ‘y)) ↔ (xRy ↔ (H ‘x)(S ∩ (B × B))(H ‘y)))) |
11 | 10 | ralbidva 2631 | . . . 4 ⊢ ((H:A–1-1-onto→B ∧ x ∈ A) → (∀y ∈ A (xRy ↔ (H ‘x)S(H ‘y)) ↔ ∀y ∈ A (xRy ↔ (H ‘x)(S ∩ (B × B))(H ‘y)))) |
12 | 11 | ralbidva 2631 | . . 3 ⊢ (H:A–1-1-onto→B → (∀x ∈ A ∀y ∈ A (xRy ↔ (H ‘x)S(H ‘y)) ↔ ∀x ∈ A ∀y ∈ A (xRy ↔ (H ‘x)(S ∩ (B × B))(H ‘y)))) |
13 | 12 | pm5.32i 618 | . 2 ⊢ ((H:A–1-1-onto→B ∧ ∀x ∈ A ∀y ∈ A (xRy ↔ (H ‘x)S(H ‘y))) ↔ (H:A–1-1-onto→B ∧ ∀x ∈ A ∀y ∈ A (xRy ↔ (H ‘x)(S ∩ (B × B))(H ‘y)))) |
14 | df-iso 4797 | . 2 ⊢ (H Isom R, S (A, B) ↔ (H:A–1-1-onto→B ∧ ∀x ∈ A ∀y ∈ A (xRy ↔ (H ‘x)S(H ‘y)))) | |
15 | df-iso 4797 | . 2 ⊢ (H Isom R, (S ∩ (B × B))(A, B) ↔ (H:A–1-1-onto→B ∧ ∀x ∈ A ∀y ∈ A (xRy ↔ (H ‘x)(S ∩ (B × B))(H ‘y)))) | |
16 | 13, 14, 15 | 3bitr4i 268 | 1 ⊢ (H Isom R, S (A, B) ↔ H Isom R, (S ∩ (B × B))(A, B)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∈ wcel 1710 ∀wral 2615 ∩ cin 3209 class class class wbr 4640 × cxp 4771 –→wf 4778 –1-1-onto→wf1o 4781 ‘cfv 4782 Isom wiso 4783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-co 4727 df-ima 4728 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-f1o 4795 df-fv 4796 df-iso 4797 |
This theorem is referenced by: isores1 5495 |
Copyright terms: Public domain | W3C validator |