New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > funfni | GIF version |
Description: Inference to convert a function and domain antecedent. (Contributed by set.mm contributors, 22-Apr-2004.) |
Ref | Expression |
---|---|
funfni.1 | ⊢ ((Fun F ∧ B ∈ dom F) → φ) |
Ref | Expression |
---|---|
funfni | ⊢ ((F Fn A ∧ B ∈ A) → φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 5182 | . . 3 ⊢ (F Fn A → Fun F) | |
2 | 1 | adantr 451 | . 2 ⊢ ((F Fn A ∧ B ∈ A) → Fun F) |
3 | fndm 5183 | . . . 4 ⊢ (F Fn A → dom F = A) | |
4 | 3 | eleq2d 2420 | . . 3 ⊢ (F Fn A → (B ∈ dom F ↔ B ∈ A)) |
5 | 4 | biimpar 471 | . 2 ⊢ ((F Fn A ∧ B ∈ A) → B ∈ dom F) |
6 | funfni.1 | . 2 ⊢ ((Fun F ∧ B ∈ dom F) → φ) | |
7 | 2, 5, 6 | syl2anc 642 | 1 ⊢ ((F Fn A ∧ B ∈ A) → φ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∈ wcel 1710 dom cdm 4773 Fun wfun 4776 Fn wfn 4777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-clel 2349 df-fn 4791 |
This theorem is referenced by: fneu 5188 elpreima 5408 fnopfv 5413 fnfvelrn 5415 |
Copyright terms: Public domain | W3C validator |