New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > fnfun | GIF version |
Description: A function with domain is a function. (Contributed by set.mm contributors, 1-Aug-1994.) |
Ref | Expression |
---|---|
fnfun | ⊢ (F Fn A → Fun F) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fn 4791 | . 2 ⊢ (F Fn A ↔ (Fun F ∧ dom F = A)) | |
2 | 1 | simplbi 446 | 1 ⊢ (F Fn A → Fun F) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 dom cdm 4773 Fun wfun 4776 Fn wfn 4777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-fn 4791 |
This theorem is referenced by: funfni 5184 fnco 5192 fnssresb 5196 ffun 5226 f1fun 5261 f1ofun 5290 fvelimab 5371 fvun1 5380 elpreima 5408 respreima 5411 fconst3 5458 enprmaplem3 6079 frecsuc 6323 |
Copyright terms: Public domain | W3C validator |