NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  fnfun GIF version

Theorem fnfun 5182
Description: A function with domain is a function. (Contributed by set.mm contributors, 1-Aug-1994.)
Assertion
Ref Expression
fnfun (F Fn A → Fun F)

Proof of Theorem fnfun
StepHypRef Expression
1 df-fn 4791 . 2 (F Fn A ↔ (Fun F dom F = A))
21simplbi 446 1 (F Fn A → Fun F)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642  dom cdm 4773  Fun wfun 4776   Fn wfn 4777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-fn 4791
This theorem is referenced by:  funfni  5184  fnco  5192  fnssresb  5196  ffun  5226  f1fun  5261  f1ofun  5290  fvelimab  5371  fvun1  5380  elpreima  5408  respreima  5411  fconst3  5458  enprmaplem3  6079  frecsuc  6323
  Copyright terms: Public domain W3C validator