New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eleq2d | GIF version |
Description: Deduction from equality to equivalence of membership. (Contributed by NM, 27-Dec-1993.) |
Ref | Expression |
---|---|
eleq1d.1 | ⊢ (φ → A = B) |
Ref | Expression |
---|---|
eleq2d | ⊢ (φ → (C ∈ A ↔ C ∈ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1d.1 | . 2 ⊢ (φ → A = B) | |
2 | eleq2 2414 | . 2 ⊢ (A = B → (C ∈ A ↔ C ∈ B)) | |
3 | 1, 2 | syl 15 | 1 ⊢ (φ → (C ∈ A ↔ C ∈ B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 ∈ wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-clel 2349 |
This theorem is referenced by: eleq12d 2421 eleqtrd 2429 neleqtrd 2448 neleqtrrd 2449 abeq2d 2463 nfceqdf 2489 drnfc1 2506 drnfc2 2507 sbcbid 3100 cbvcsb 3141 sbcel1g 3156 csbeq2d 3161 csbie2g 3183 cbvralcsf 3199 cbvreucsf 3201 cbvrabcsf 3202 cbviun 4004 cbviin 4005 iinxsng 4043 iinxprg 4044 iunxsng 4045 nnsucelr 4429 nnadjoin 4521 tfinnn 4535 opeliunxp 4821 opeliunxp2 4823 iunxpf 4830 funfni 5184 fun11iun 5306 fvelrnb 5366 fniniseg 5372 fvun1 5380 eqfnfv 5393 elpreima 5408 dff3 5421 dffo4 5424 eluniima 5470 dff13 5472 isoini 5498 ovelrn 5609 mpteq12f 5656 mpt2eq123dv 5664 cbvmpt2x 5679 ovmpt2x 5713 fmpt2x 5731 clos1basesucg 5885 erref 5960 ereldm 5972 elmapg 6013 elpmg 6014 enpw1 6063 enprmaplem3 6079 nenpw1pwlem2 6086 elce 6176 nmembers1 6272 |
Copyright terms: Public domain | W3C validator |