![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > eleq2d | GIF version |
Description: Deduction from equality to equivalence of membership. (Contributed by NM, 27-Dec-1993.) |
Ref | Expression |
---|---|
eleq1d.1 | ⊢ (φ → A = B) |
Ref | Expression |
---|---|
eleq2d | ⊢ (φ → (C ∈ A ↔ C ∈ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1d.1 | . 2 ⊢ (φ → A = B) | |
2 | eleq2 2414 | . 2 ⊢ (A = B → (C ∈ A ↔ C ∈ B)) | |
3 | 1, 2 | syl 15 | 1 ⊢ (φ → (C ∈ A ↔ C ∈ B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 ∈ wcel 1710 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-clel 2349 |
This theorem is referenced by: eleq12d 2421 eleqtrd 2429 neleqtrd 2448 neleqtrrd 2449 abeq2d 2462 nfceqdf 2488 drnfc1 2505 drnfc2 2506 sbcbid 3099 cbvcsb 3140 sbcel1g 3155 csbeq2d 3160 csbie2g 3182 cbvralcsf 3198 cbvreucsf 3200 cbvrabcsf 3201 cbviun 4003 cbviin 4004 iinxsng 4042 iinxprg 4043 iunxsng 4044 nnsucelr 4428 nnadjoin 4520 tfinnn 4534 opeliunxp 4820 opeliunxp2 4822 iunxpf 4829 funfni 5183 fun11iun 5305 fvelrnb 5365 fniniseg 5371 fvun1 5379 eqfnfv 5392 elpreima 5407 dff3 5420 dffo4 5423 eluniima 5469 dff13 5471 isoini 5497 ovelrn 5608 mpteq12f 5655 mpt2eq123dv 5663 cbvmpt2x 5678 ovmpt2x 5712 fmpt2x 5730 clos1basesucg 5884 erref 5959 ereldm 5971 elmapg 6012 elpmg 6013 enpw1 6062 enprmaplem3 6078 nenpw1pwlem2 6085 elce 6175 nmembers1 6271 |
Copyright terms: Public domain | W3C validator |