New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > gencbvex2 | GIF version |
Description: Restatement of gencbvex 2902 with weaker hypotheses. (Contributed by Jeffrey Hankins, 6-Dec-2006.) |
Ref | Expression |
---|---|
gencbvex2.1 | ⊢ A ∈ V |
gencbvex2.2 | ⊢ (A = y → (φ ↔ ψ)) |
gencbvex2.3 | ⊢ (A = y → (χ ↔ θ)) |
gencbvex2.4 | ⊢ (θ → ∃x(χ ∧ A = y)) |
Ref | Expression |
---|---|
gencbvex2 | ⊢ (∃x(χ ∧ φ) ↔ ∃y(θ ∧ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gencbvex2.1 | . 2 ⊢ A ∈ V | |
2 | gencbvex2.2 | . 2 ⊢ (A = y → (φ ↔ ψ)) | |
3 | gencbvex2.3 | . 2 ⊢ (A = y → (χ ↔ θ)) | |
4 | gencbvex2.4 | . . 3 ⊢ (θ → ∃x(χ ∧ A = y)) | |
5 | 3 | biimpac 472 | . . . 4 ⊢ ((χ ∧ A = y) → θ) |
6 | 5 | exlimiv 1634 | . . 3 ⊢ (∃x(χ ∧ A = y) → θ) |
7 | 4, 6 | impbii 180 | . 2 ⊢ (θ ↔ ∃x(χ ∧ A = y)) |
8 | 1, 2, 3, 7 | gencbvex 2902 | 1 ⊢ (∃x(χ ∧ φ) ↔ ∃y(θ ∧ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 Vcvv 2860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-v 2862 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |