New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > gencbval | GIF version |
Description: Change of bound variable using implicit substitution. (Contributed by NM, 17-May-1996.) |
Ref | Expression |
---|---|
gencbval.1 | ⊢ A ∈ V |
gencbval.2 | ⊢ (A = y → (φ ↔ ψ)) |
gencbval.3 | ⊢ (A = y → (χ ↔ θ)) |
gencbval.4 | ⊢ (θ ↔ ∃x(χ ∧ A = y)) |
Ref | Expression |
---|---|
gencbval | ⊢ (∀x(χ → φ) ↔ ∀y(θ → ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gencbval.1 | . . . 4 ⊢ A ∈ V | |
2 | gencbval.2 | . . . . 5 ⊢ (A = y → (φ ↔ ψ)) | |
3 | 2 | notbid 285 | . . . 4 ⊢ (A = y → (¬ φ ↔ ¬ ψ)) |
4 | gencbval.3 | . . . 4 ⊢ (A = y → (χ ↔ θ)) | |
5 | gencbval.4 | . . . 4 ⊢ (θ ↔ ∃x(χ ∧ A = y)) | |
6 | 1, 3, 4, 5 | gencbvex 2902 | . . 3 ⊢ (∃x(χ ∧ ¬ φ) ↔ ∃y(θ ∧ ¬ ψ)) |
7 | exanali 1585 | . . 3 ⊢ (∃x(χ ∧ ¬ φ) ↔ ¬ ∀x(χ → φ)) | |
8 | exanali 1585 | . . 3 ⊢ (∃y(θ ∧ ¬ ψ) ↔ ¬ ∀y(θ → ψ)) | |
9 | 6, 7, 8 | 3bitr3i 266 | . 2 ⊢ (¬ ∀x(χ → φ) ↔ ¬ ∀y(θ → ψ)) |
10 | 9 | con4bii 288 | 1 ⊢ (∀x(χ → φ) ↔ ∀y(θ → ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 ∃wex 1541 = wceq 1642 ∈ wcel 1710 Vcvv 2860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-v 2862 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |