New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > hbn1w | GIF version |
Description: Weak version of hbn1 1730. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 9-Apr-2017.) |
Ref | Expression |
---|---|
hbn1w.1 | ⊢ (x = y → (φ ↔ ψ)) |
Ref | Expression |
---|---|
hbn1w | ⊢ (¬ ∀xφ → ∀x ¬ ∀xφ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1616 | . 2 ⊢ (∀xφ → ∀y∀xφ) | |
2 | ax-17 1616 | . 2 ⊢ (¬ ψ → ∀x ¬ ψ) | |
3 | ax-17 1616 | . 2 ⊢ (∀yψ → ∀x∀yψ) | |
4 | ax-17 1616 | . 2 ⊢ (¬ φ → ∀y ¬ φ) | |
5 | ax-17 1616 | . 2 ⊢ (¬ ∀yψ → ∀x ¬ ∀yψ) | |
6 | hbn1w.1 | . 2 ⊢ (x = y → (φ ↔ ψ)) | |
7 | 1, 2, 3, 4, 5, 6 | hbn1fw 1705 | 1 ⊢ (¬ ∀xφ → ∀x ¬ ∀xφ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 |
This theorem is referenced by: hba1w 1707 hbe1w 1708 ax6w 1717 |
Copyright terms: Public domain | W3C validator |