| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > hbn1w | GIF version | ||
| Description: Weak version of hbn1 1730. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 9-Apr-2017.) |
| Ref | Expression |
|---|---|
| hbn1w.1 | ⊢ (x = y → (φ ↔ ψ)) |
| Ref | Expression |
|---|---|
| hbn1w | ⊢ (¬ ∀xφ → ∀x ¬ ∀xφ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1616 | . 2 ⊢ (∀xφ → ∀y∀xφ) | |
| 2 | ax-17 1616 | . 2 ⊢ (¬ ψ → ∀x ¬ ψ) | |
| 3 | ax-17 1616 | . 2 ⊢ (∀yψ → ∀x∀yψ) | |
| 4 | ax-17 1616 | . 2 ⊢ (¬ φ → ∀y ¬ φ) | |
| 5 | ax-17 1616 | . 2 ⊢ (¬ ∀yψ → ∀x ¬ ∀yψ) | |
| 6 | hbn1w.1 | . 2 ⊢ (x = y → (φ ↔ ψ)) | |
| 7 | 1, 2, 3, 4, 5, 6 | hbn1fw 1705 | 1 ⊢ (¬ ∀xφ → ∀x ¬ ∀xφ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∀wal 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 |
| This theorem is referenced by: hba1w 1707 hbe1w 1708 ax6w 1717 |
| Copyright terms: Public domain | W3C validator |