New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > hbe1w | GIF version |
Description: Weak version of hbe1 1731. See comments for ax6w 1717. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 19-Apr-2017.) |
Ref | Expression |
---|---|
hbn1w.1 | ⊢ (x = y → (φ ↔ ψ)) |
Ref | Expression |
---|---|
hbe1w | ⊢ (∃xφ → ∀x∃xφ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ex 1542 | . 2 ⊢ (∃xφ ↔ ¬ ∀x ¬ φ) | |
2 | hbn1w.1 | . . . 4 ⊢ (x = y → (φ ↔ ψ)) | |
3 | 2 | notbid 285 | . . 3 ⊢ (x = y → (¬ φ ↔ ¬ ψ)) |
4 | 3 | hbn1w 1706 | . 2 ⊢ (¬ ∀x ¬ φ → ∀x ¬ ∀x ¬ φ) |
5 | 1, 4 | hbxfrbi 1568 | 1 ⊢ (∃xφ → ∀x∃xφ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |