New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > hba1w | GIF version |
Description: Weak version of hba1 1786. See comments for ax6w 1717. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 9-Apr-2017.) |
Ref | Expression |
---|---|
hbn1w.1 | ⊢ (x = y → (φ ↔ ψ)) |
Ref | Expression |
---|---|
hba1w | ⊢ (∀xφ → ∀x∀xφ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbn1w.1 | . . . . . . 7 ⊢ (x = y → (φ ↔ ψ)) | |
2 | 1 | cbvalvw 1702 | . . . . . 6 ⊢ (∀xφ ↔ ∀yψ) |
3 | 2 | a1i 10 | . . . . 5 ⊢ (x = y → (∀xφ ↔ ∀yψ)) |
4 | 3 | notbid 285 | . . . 4 ⊢ (x = y → (¬ ∀xφ ↔ ¬ ∀yψ)) |
5 | 4 | spw 1694 | . . 3 ⊢ (∀x ¬ ∀xφ → ¬ ∀xφ) |
6 | 5 | con2i 112 | . 2 ⊢ (∀xφ → ¬ ∀x ¬ ∀xφ) |
7 | 4 | hbn1w 1706 | . 2 ⊢ (¬ ∀x ¬ ∀xφ → ∀x ¬ ∀x ¬ ∀xφ) |
8 | 1 | hbn1w 1706 | . . . 4 ⊢ (¬ ∀xφ → ∀x ¬ ∀xφ) |
9 | 8 | con1i 121 | . . 3 ⊢ (¬ ∀x ¬ ∀xφ → ∀xφ) |
10 | 9 | alimi 1559 | . 2 ⊢ (∀x ¬ ∀x ¬ ∀xφ → ∀x∀xφ) |
11 | 6, 7, 10 | 3syl 18 | 1 ⊢ (∀xφ → ∀x∀xφ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |