New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > hbn1fw | GIF version |
Description: Weak version of ax-6 1729 from which we can prove any ax-6 1729 instance not involving wff variables or bundling. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 19-Apr-2017.) |
Ref | Expression |
---|---|
hbn1fw.1 | ⊢ (∀xφ → ∀y∀xφ) |
hbn1fw.2 | ⊢ (¬ ψ → ∀x ¬ ψ) |
hbn1fw.3 | ⊢ (∀yψ → ∀x∀yψ) |
hbn1fw.4 | ⊢ (¬ φ → ∀y ¬ φ) |
hbn1fw.5 | ⊢ (¬ ∀yψ → ∀x ¬ ∀yψ) |
hbn1fw.6 | ⊢ (x = y → (φ ↔ ψ)) |
Ref | Expression |
---|---|
hbn1fw | ⊢ (¬ ∀xφ → ∀x ¬ ∀xφ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbn1fw.1 | . . . . 5 ⊢ (∀xφ → ∀y∀xφ) | |
2 | hbn1fw.2 | . . . . 5 ⊢ (¬ ψ → ∀x ¬ ψ) | |
3 | hbn1fw.3 | . . . . 5 ⊢ (∀yψ → ∀x∀yψ) | |
4 | hbn1fw.4 | . . . . 5 ⊢ (¬ φ → ∀y ¬ φ) | |
5 | hbn1fw.6 | . . . . 5 ⊢ (x = y → (φ ↔ ψ)) | |
6 | 1, 2, 3, 4, 5 | cbvalw 1701 | . . . 4 ⊢ (∀xφ ↔ ∀yψ) |
7 | 6 | biimpri 197 | . . 3 ⊢ (∀yψ → ∀xφ) |
8 | 7 | con3i 127 | . 2 ⊢ (¬ ∀xφ → ¬ ∀yψ) |
9 | hbn1fw.5 | . 2 ⊢ (¬ ∀yψ → ∀x ¬ ∀yψ) | |
10 | 6 | biimpi 186 | . . . 4 ⊢ (∀xφ → ∀yψ) |
11 | 10 | con3i 127 | . . 3 ⊢ (¬ ∀yψ → ¬ ∀xφ) |
12 | 11 | alimi 1559 | . 2 ⊢ (∀x ¬ ∀yψ → ∀x ¬ ∀xφ) |
13 | 8, 9, 12 | 3syl 18 | 1 ⊢ (¬ ∀xφ → ∀x ¬ ∀xφ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 |
This theorem is referenced by: hbn1w 1706 |
Copyright terms: Public domain | W3C validator |