NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  hbnae GIF version

Theorem hbnae 1955
Description: All variables are effectively bound in a distinct variable specifier. Lemma L19 in [Megill] p. 446 (p. 14 of the preprint). (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
hbnae x x = yz ¬ x x = y)

Proof of Theorem hbnae
StepHypRef Expression
1 hbae 1953 . 2 (x x = yzx x = y)
21hbn 1776 1 x x = yz ¬ x x = y)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545
This theorem is referenced by:  hbnaes  1957  dvelimh  1964  eujustALT  2207
  Copyright terms: Public domain W3C validator