![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > hbae | GIF version |
Description: All variables are effectively bound in an identical variable specifier. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
hbae | ⊢ (∀x x = y → ∀z∀x x = y) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 1747 | . . . . 5 ⊢ (∀x x = y → x = y) | |
2 | ax12o 1934 | . . . . 5 ⊢ (¬ ∀z z = x → (¬ ∀z z = y → (x = y → ∀z x = y))) | |
3 | 1, 2 | syl7 63 | . . . 4 ⊢ (¬ ∀z z = x → (¬ ∀z z = y → (∀x x = y → ∀z x = y))) |
4 | ax10o 1952 | . . . . 5 ⊢ (∀x x = z → (∀x x = y → ∀z x = y)) | |
5 | 4 | aecoms 1947 | . . . 4 ⊢ (∀z z = x → (∀x x = y → ∀z x = y)) |
6 | ax10o 1952 | . . . . . . 7 ⊢ (∀x x = y → (∀x x = y → ∀y x = y)) | |
7 | 6 | pm2.43i 43 | . . . . . 6 ⊢ (∀x x = y → ∀y x = y) |
8 | ax10o 1952 | . . . . . 6 ⊢ (∀y y = z → (∀y x = y → ∀z x = y)) | |
9 | 7, 8 | syl5 28 | . . . . 5 ⊢ (∀y y = z → (∀x x = y → ∀z x = y)) |
10 | 9 | aecoms 1947 | . . . 4 ⊢ (∀z z = y → (∀x x = y → ∀z x = y)) |
11 | 3, 5, 10 | pm2.61ii 157 | . . 3 ⊢ (∀x x = y → ∀z x = y) |
12 | 11 | a5i 1789 | . 2 ⊢ (∀x x = y → ∀x∀z x = y) |
13 | ax-7 1734 | . 2 ⊢ (∀x∀z x = y → ∀z∀x x = y) | |
14 | 12, 13 | syl 15 | 1 ⊢ (∀x x = y → ∀z∀x x = y) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: nfae 1954 hbnae 1955 dral1 1965 dral2 1966 drex2 1968 aev 1991 |
Copyright terms: Public domain | W3C validator |