Proof of Theorem hbae
Step | Hyp | Ref
| Expression |
1 | | sp 1747 |
. . . . 5
⊢ (∀x x = y →
x = y) |
2 | | ax12o 1934 |
. . . . 5
⊢ (¬ ∀z z = x →
(¬ ∀z z = y → (x =
y → ∀z x = y))) |
3 | 1, 2 | syl7 63 |
. . . 4
⊢ (¬ ∀z z = x →
(¬ ∀z z = y → (∀x x = y →
∀z
x = y))) |
4 | | ax10o 1952 |
. . . . 5
⊢ (∀x x = z →
(∀x
x = y
→ ∀z x = y)) |
5 | 4 | aecoms 1947 |
. . . 4
⊢ (∀z z = x →
(∀x
x = y
→ ∀z x = y)) |
6 | | ax10o 1952 |
. . . . . . 7
⊢ (∀x x = y →
(∀x
x = y
→ ∀y x = y)) |
7 | 6 | pm2.43i 43 |
. . . . . 6
⊢ (∀x x = y →
∀y
x = y) |
8 | | ax10o 1952 |
. . . . . 6
⊢ (∀y y = z →
(∀y
x = y
→ ∀z x = y)) |
9 | 7, 8 | syl5 28 |
. . . . 5
⊢ (∀y y = z →
(∀x
x = y
→ ∀z x = y)) |
10 | 9 | aecoms 1947 |
. . . 4
⊢ (∀z z = y →
(∀x
x = y
→ ∀z x = y)) |
11 | 3, 5, 10 | pm2.61ii 157 |
. . 3
⊢ (∀x x = y →
∀z
x = y) |
12 | 11 | a5i 1789 |
. 2
⊢ (∀x x = y →
∀x∀z x = y) |
13 | | ax-7 1734 |
. 2
⊢ (∀x∀z x = y →
∀z∀x x = y) |
14 | 12, 13 | syl 15 |
1
⊢ (∀x x = y →
∀z∀x x = y) |