New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfnae GIF version

Theorem nfnae 1956
 Description: All variables are effectively bound in a distinct variable specifier. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfnae z ¬ x x = y

Proof of Theorem nfnae
StepHypRef Expression
1 nfae 1954 . 2 zx x = y
21nfn 1793 1 z ¬ x x = y
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3  ∀wal 1540  Ⅎwnf 1544 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925 This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545 This theorem is referenced by:  nfeqf  1958  exdistrf  1971  nfald2  1972  equs5  1996  dvelimf  1997  sbequ6  2032  nfsb2  2058  nfsb4t  2080  dvelimdf  2082  sbco2  2086  sbco3  2088  sbcom  2089  sb9i  2094  sbal2  2134  nfeud2  2216  nfabd2  2507  ralcom2  2775  copsexg  4607  dfid3  4768
 Copyright terms: Public domain W3C validator