| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > oprabbid | GIF version | ||
| Description: Equivalent wff's yield equal operation class abstractions (deduction rule). (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 24-Jun-2014.) |
| Ref | Expression |
|---|---|
| oprabbid.1 | ⊢ Ⅎxφ |
| oprabbid.2 | ⊢ Ⅎyφ |
| oprabbid.3 | ⊢ Ⅎzφ |
| oprabbid.4 | ⊢ (φ → (ψ ↔ χ)) |
| Ref | Expression |
|---|---|
| oprabbid | ⊢ (φ → {〈〈x, y〉, z〉 ∣ ψ} = {〈〈x, y〉, z〉 ∣ χ}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oprabbid.1 | . . . 4 ⊢ Ⅎxφ | |
| 2 | oprabbid.2 | . . . . 5 ⊢ Ⅎyφ | |
| 3 | oprabbid.3 | . . . . . 6 ⊢ Ⅎzφ | |
| 4 | oprabbid.4 | . . . . . . 7 ⊢ (φ → (ψ ↔ χ)) | |
| 5 | 4 | anbi2d 684 | . . . . . 6 ⊢ (φ → ((w = 〈〈x, y〉, z〉 ∧ ψ) ↔ (w = 〈〈x, y〉, z〉 ∧ χ))) |
| 6 | 3, 5 | exbid 1773 | . . . . 5 ⊢ (φ → (∃z(w = 〈〈x, y〉, z〉 ∧ ψ) ↔ ∃z(w = 〈〈x, y〉, z〉 ∧ χ))) |
| 7 | 2, 6 | exbid 1773 | . . . 4 ⊢ (φ → (∃y∃z(w = 〈〈x, y〉, z〉 ∧ ψ) ↔ ∃y∃z(w = 〈〈x, y〉, z〉 ∧ χ))) |
| 8 | 1, 7 | exbid 1773 | . . 3 ⊢ (φ → (∃x∃y∃z(w = 〈〈x, y〉, z〉 ∧ ψ) ↔ ∃x∃y∃z(w = 〈〈x, y〉, z〉 ∧ χ))) |
| 9 | 8 | abbidv 2468 | . 2 ⊢ (φ → {w ∣ ∃x∃y∃z(w = 〈〈x, y〉, z〉 ∧ ψ)} = {w ∣ ∃x∃y∃z(w = 〈〈x, y〉, z〉 ∧ χ)}) |
| 10 | df-oprab 5529 | . 2 ⊢ {〈〈x, y〉, z〉 ∣ ψ} = {w ∣ ∃x∃y∃z(w = 〈〈x, y〉, z〉 ∧ ψ)} | |
| 11 | df-oprab 5529 | . 2 ⊢ {〈〈x, y〉, z〉 ∣ χ} = {w ∣ ∃x∃y∃z(w = 〈〈x, y〉, z〉 ∧ χ)} | |
| 12 | 9, 10, 11 | 3eqtr4g 2410 | 1 ⊢ (φ → {〈〈x, y〉, z〉 ∣ ψ} = {〈〈x, y〉, z〉 ∣ χ}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∃wex 1541 Ⅎwnf 1544 = wceq 1642 {cab 2339 〈cop 4562 {coprab 5528 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-oprab 5529 |
| This theorem is referenced by: oprabbidv 5565 mpt2eq123 5662 |
| Copyright terms: Public domain | W3C validator |