New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ifbieq2i | GIF version |
Description: Equivalence/equality inference for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
ifbieq2i.1 | ⊢ (φ ↔ ψ) |
ifbieq2i.2 | ⊢ A = B |
Ref | Expression |
---|---|
ifbieq2i | ⊢ if(φ, C, A) = if(ψ, C, B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifbieq2i.1 | . . 3 ⊢ (φ ↔ ψ) | |
2 | ifbi 3680 | . . 3 ⊢ ((φ ↔ ψ) → if(φ, C, A) = if(ψ, C, A)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ if(φ, C, A) = if(ψ, C, A) |
4 | ifbieq2i.2 | . . 3 ⊢ A = B | |
5 | ifeq2 3668 | . . 3 ⊢ (A = B → if(ψ, C, A) = if(ψ, C, B)) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ if(ψ, C, A) = if(ψ, C, B) |
7 | 3, 6 | eqtri 2373 | 1 ⊢ if(φ, C, A) = if(ψ, C, B) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 = wceq 1642 ifcif 3663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rab 2624 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 df-if 3664 |
This theorem is referenced by: ifbieq12i 3684 |
Copyright terms: Public domain | W3C validator |