New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ifeq2 | GIF version |
Description: Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
ifeq2 | ⊢ (A = B → if(φ, C, A) = if(φ, C, B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq 2854 | . . 3 ⊢ (A = B → {x ∈ A ∣ ¬ φ} = {x ∈ B ∣ ¬ φ}) | |
2 | 1 | uneq2d 3419 | . 2 ⊢ (A = B → ({x ∈ C ∣ φ} ∪ {x ∈ A ∣ ¬ φ}) = ({x ∈ C ∣ φ} ∪ {x ∈ B ∣ ¬ φ})) |
3 | dfif6 3666 | . 2 ⊢ if(φ, C, A) = ({x ∈ C ∣ φ} ∪ {x ∈ A ∣ ¬ φ}) | |
4 | dfif6 3666 | . 2 ⊢ if(φ, C, B) = ({x ∈ C ∣ φ} ∪ {x ∈ B ∣ ¬ φ}) | |
5 | 2, 3, 4 | 3eqtr4g 2410 | 1 ⊢ (A = B → if(φ, C, A) = if(φ, C, B)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1642 {crab 2619 ∪ cun 3208 ifcif 3663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rab 2624 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 df-if 3664 |
This theorem is referenced by: ifeq12 3676 ifeq2d 3678 ifbieq2i 3682 ifexg 3722 |
Copyright terms: Public domain | W3C validator |