New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqeltrd | GIF version |
Description: Substitution of equal classes into membership relation, deduction form. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
eqeltrd.1 | ⊢ (φ → A = B) |
eqeltrd.2 | ⊢ (φ → B ∈ C) |
Ref | Expression |
---|---|
eqeltrd | ⊢ (φ → A ∈ C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrd.2 | . 2 ⊢ (φ → B ∈ C) | |
2 | eqeltrd.1 | . . 3 ⊢ (φ → A = B) | |
3 | 2 | eleq1d 2419 | . 2 ⊢ (φ → (A ∈ C ↔ B ∈ C)) |
4 | 1, 3 | mpbird 223 | 1 ⊢ (φ → A ∈ C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ∈ wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-clel 2349 |
This theorem is referenced by: eqeltrrd 2428 3eltr4d 2434 syl5eqel 2437 syl6eqel 2441 ifclda 3690 intab 3957 nnsucelr 4429 ssfin 4471 tfinprop 4490 vfintle 4547 vfinspclt 4553 vinf 4556 ideqg 4869 dffo3 5423 f1oiso2 5501 elimdelov 5574 fvmptd 5703 enmap2lem5 6068 enmap1lem5 6074 ncssfin 6152 nntccl 6171 |
Copyright terms: Public domain | W3C validator |