New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ifeq2d | GIF version |
Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.) |
Ref | Expression |
---|---|
ifeq1d.1 | ⊢ (φ → A = B) |
Ref | Expression |
---|---|
ifeq2d | ⊢ (φ → if(ψ, C, A) = if(ψ, C, B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq1d.1 | . 2 ⊢ (φ → A = B) | |
2 | ifeq2 3668 | . 2 ⊢ (A = B → if(ψ, C, A) = if(ψ, C, B)) | |
3 | 1, 2 | syl 15 | 1 ⊢ (φ → if(ψ, C, A) = if(ψ, C, B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ifcif 3663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rab 2624 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 df-if 3664 |
This theorem is referenced by: ifeq12d 3679 ifbieq2d 3683 ifeq2da 3689 |
Copyright terms: Public domain | W3C validator |