NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  indif1 GIF version

Theorem indif1 3500
Description: Bring an intersection in and out of a class difference. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
indif1 ((A C) ∩ B) = ((AB) C)

Proof of Theorem indif1
StepHypRef Expression
1 indif2 3499 . 2 (B ∩ (A C)) = ((BA) C)
2 incom 3449 . 2 (B ∩ (A C)) = ((A C) ∩ B)
3 incom 3449 . . 3 (BA) = (AB)
43difeq1i 3382 . 2 ((BA) C) = ((AB) C)
51, 2, 43eqtr3i 2381 1 ((A C) ∩ B) = ((AB) C)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642   cdif 3207  cin 3209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator