New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3eqtr3i | GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 6-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtr3i.1 | ⊢ A = B |
3eqtr3i.2 | ⊢ A = C |
3eqtr3i.3 | ⊢ B = D |
Ref | Expression |
---|---|
3eqtr3i | ⊢ C = D |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr3i.1 | . . 3 ⊢ A = B | |
2 | 3eqtr3i.2 | . . 3 ⊢ A = C | |
3 | 1, 2 | eqtr3i 2375 | . 2 ⊢ B = C |
4 | 3eqtr3i.3 | . 2 ⊢ B = D | |
5 | 3, 4 | eqtr3i 2375 | 1 ⊢ C = D |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-cleq 2346 |
This theorem is referenced by: csbvarg 3164 un12 3422 in12 3467 indif1 3500 difundi 3508 difundir 3509 difindi 3510 difindir 3511 dif32 3518 undif1 3626 addc4 4418 addc6 4419 tfin1c 4500 xp0 5045 caov12 5637 caov13 5639 caov411 5641 caovdir 5643 tcdi 6165 tc2c 6167 ce0addcnnul 6180 nchoicelem1 6290 |
Copyright terms: Public domain | W3C validator |