New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > inindi | GIF version |
Description: Intersection distributes over itself. (Contributed by NM, 6-May-1994.) |
Ref | Expression |
---|---|
inindi | ⊢ (A ∩ (B ∩ C)) = ((A ∩ B) ∩ (A ∩ C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inidm 3465 | . . 3 ⊢ (A ∩ A) = A | |
2 | 1 | ineq1i 3454 | . 2 ⊢ ((A ∩ A) ∩ (B ∩ C)) = (A ∩ (B ∩ C)) |
3 | in4 3472 | . 2 ⊢ ((A ∩ A) ∩ (B ∩ C)) = ((A ∩ B) ∩ (A ∩ C)) | |
4 | 2, 3 | eqtr3i 2375 | 1 ⊢ (A ∩ (B ∩ C)) = ((A ∩ B) ∩ (A ∩ C)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 ∩ cin 3209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 |
This theorem is referenced by: difundi 3508 dfif5 3675 inindif 4076 resindi 4984 |
Copyright terms: Public domain | W3C validator |