NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  inindi GIF version

Theorem inindi 3472
Description: Intersection distributes over itself. (Contributed by NM, 6-May-1994.)
Assertion
Ref Expression
inindi (A ∩ (BC)) = ((AB) ∩ (AC))

Proof of Theorem inindi
StepHypRef Expression
1 inidm 3464 . . 3 (AA) = A
21ineq1i 3453 . 2 ((AA) ∩ (BC)) = (A ∩ (BC))
3 in4 3471 . 2 ((AA) ∩ (BC)) = ((AB) ∩ (AC))
42, 3eqtr3i 2375 1 (A ∩ (BC)) = ((AB) ∩ (AC))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642  cin 3208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213
This theorem is referenced by:  difundi  3507  dfif5  3674  inindif  4075  resindi  4983
  Copyright terms: Public domain W3C validator