NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ineq1i GIF version

Theorem ineq1i 3453
Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.)
Hypothesis
Ref Expression
ineq1i.1 A = B
Assertion
Ref Expression
ineq1i (AC) = (BC)

Proof of Theorem ineq1i
StepHypRef Expression
1 ineq1i.1 . 2 A = B
2 ineq1 3450 . 2 (A = B → (AC) = (BC))
31, 2ax-mp 5 1 (AC) = (BC)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642  cin 3208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213
This theorem is referenced by:  in12  3466  inindi  3472  dfrab2  3530  dfrab3  3531  dfif5  3674  pw10  4161  resres  4980  nmembers1lem1  6268
  Copyright terms: Public domain W3C validator