New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqtr3i | GIF version |
Description: An equality transitivity inference. (Contributed by NM, 6-May-1994.) |
Ref | Expression |
---|---|
eqtr3i.1 | ⊢ A = B |
eqtr3i.2 | ⊢ A = C |
Ref | Expression |
---|---|
eqtr3i | ⊢ B = C |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr3i.1 | . . 3 ⊢ A = B | |
2 | 1 | eqcomi 2357 | . 2 ⊢ B = A |
3 | eqtr3i.2 | . 2 ⊢ A = C | |
4 | 2, 3 | eqtri 2373 | 1 ⊢ B = C |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-cleq 2346 |
This theorem is referenced by: 3eqtr3i 2381 3eqtr3ri 2382 unundi 3425 unundir 3426 inindi 3473 inindir 3474 dfin4 3496 difun1 3515 difabs 3519 notab 3526 dfrab2 3531 dif0 3621 difdifdir 3638 tpidm13 3823 intmin2 3954 compl0 4072 1cnnc 4409 tfinltfinlem1 4501 evenodddisj 4517 sfinltfin 4536 iunxpconst 4820 opabbi2i 4867 dmres 4987 opabresid 5004 rnresi 5012 resdmres 5079 coires1 5097 cnvtr 5099 fcoi1 5241 fopabsn 5442 fvsnun1 5448 funiunfv 5468 caov31 5638 oprabbi2i 5648 mpt2mpt 5710 composefn 5819 braddcfn 5827 frds 5936 enpw1 6063 nncdiv3 6278 nnc3n3p1 6279 |
Copyright terms: Public domain | W3C validator |