| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > ins3keqd | GIF version | ||
| Description: Equality deduction for Kuratowski insert three operator. (Contributed by SF, 12-Jan-2015.) |
| Ref | Expression |
|---|---|
| inskeqd.1 | ⊢ (φ → A = B) |
| Ref | Expression |
|---|---|
| ins3keqd | ⊢ (φ → Ins3k A = Ins3k B) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inskeqd.1 | . 2 ⊢ (φ → A = B) | |
| 2 | ins3keq 4220 | . 2 ⊢ (A = B → Ins3k A = Ins3k B) | |
| 3 | 1, 2 | syl 15 | 1 ⊢ (φ → Ins3k A = Ins3k B) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1642 Ins3k cins3k 4178 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-ins3k 4189 |
| This theorem is referenced by: cokeq2 4232 imagekeq 4245 |
| Copyright terms: Public domain | W3C validator |