NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  imakeq1 GIF version

Theorem imakeq1 4225
Description: Equality theorem for Kuratowski image. (Contributed by SF, 12-Jan-2015.)
Assertion
Ref Expression
imakeq1 (A = B → (Ak C) = (Bk C))

Proof of Theorem imakeq1
Dummy variables x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2414 . . . 4 (A = B → (⟪y, x A ↔ ⟪y, x B))
21rexbidv 2636 . . 3 (A = B → (y Cy, x Ay Cy, x B))
32abbidv 2468 . 2 (A = B → {x y Cy, x A} = {x y Cy, x B})
4 df-imak 4190 . 2 (Ak C) = {x y Cy, x A}
5 df-imak 4190 . 2 (Bk C) = {x y Cy, x B}
63, 4, 53eqtr4g 2410 1 (A = B → (Ak C) = (Bk C))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642   wcel 1710  {cab 2339  wrex 2616  copk 4058  k cimak 4180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-rex 2621  df-imak 4190
This theorem is referenced by:  imakeq1i  4227  imakeq1d  4229
  Copyright terms: Public domain W3C validator