New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mpi | GIF version |
Description: A nested modus ponens inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Stefan Allan, 20-Mar-2006.) |
Ref | Expression |
---|---|
mpi.1 | ⊢ ψ |
mpi.2 | ⊢ (φ → (ψ → χ)) |
Ref | Expression |
---|---|
mpi | ⊢ (φ → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpi.1 | . . 3 ⊢ ψ | |
2 | 1 | a1i 10 | . 2 ⊢ (φ → ψ) |
3 | mpi.2 | . 2 ⊢ (φ → (ψ → χ)) | |
4 | 2, 3 | mpd 14 | 1 ⊢ (φ → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: mp2 17 syl6mpi 58 mp2ani 659 mp3an3 1266 3impexpbicom 1367 ee10 1376 merco2 1501 equcomi 1679 ax10 1944 equveli 1988 ax11v2 1992 ax11eq 2193 ax11el 2194 ax11inda 2200 ax11v2-o 2201 pm13.183 2980 sbcth 3061 sbcth2 3130 ssun3 3429 ssun4 3430 uneqdifeq 3639 ralf0 3657 uniintsn 3964 opkth1g 4131 funimass2 5171 fvopab4g 5389 fovcl 5589 ov2ag 5599 ov3 5600 fnfreclem3 6320 |
Copyright terms: Public domain | W3C validator |