NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  moexexv GIF version

Theorem moexexv 2274
Description: "At most one" double quantification. (Contributed by NM, 26-Jan-1997.)
Assertion
Ref Expression
moexexv ((∃*xφ x∃*yψ) → ∃*yx(φ ψ))
Distinct variable group:   φ,y
Allowed substitution hints:   φ(x)   ψ(x,y)

Proof of Theorem moexexv
StepHypRef Expression
1 nfv 1619 . 2 yφ
21moexex 2273 1 ((∃*xφ x∃*yψ) → ∃*yx(φ ψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358  wal 1540  wex 1541  ∃*wmo 2205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209
This theorem is referenced by:  mosub  3015  funco  5143
  Copyright terms: Public domain W3C validator