New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 2moex | GIF version |
Description: Double quantification with "at most one." (Contributed by NM, 3-Dec-2001.) |
Ref | Expression |
---|---|
2moex | ⊢ (∃*x∃yφ → ∀y∃*xφ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfe1 1732 | . . 3 ⊢ Ⅎy∃yφ | |
2 | 1 | nfmo 2221 | . 2 ⊢ Ⅎy∃*x∃yφ |
3 | 19.8a 1756 | . . 3 ⊢ (φ → ∃yφ) | |
4 | 3 | moimi 2251 | . 2 ⊢ (∃*x∃yφ → ∃*xφ) |
5 | 2, 4 | alrimi 1765 | 1 ⊢ (∃*x∃yφ → ∀y∃*xφ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 ∃wex 1541 ∃*wmo 2205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 |
This theorem is referenced by: 2eu2 2285 2eu5 2288 |
Copyright terms: Public domain | W3C validator |