| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > mosub | GIF version | ||
| Description: "At most one" remains true after substitution. (Contributed by NM, 9-Mar-1995.) |
| Ref | Expression |
|---|---|
| mosub.1 | ⊢ ∃*xφ |
| Ref | Expression |
|---|---|
| mosub | ⊢ ∃*x∃y(y = A ∧ φ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moeq 3013 | . 2 ⊢ ∃*y y = A | |
| 2 | mosub.1 | . . 3 ⊢ ∃*xφ | |
| 3 | 2 | ax-gen 1546 | . 2 ⊢ ∀y∃*xφ |
| 4 | moexexv 2274 | . 2 ⊢ ((∃*y y = A ∧ ∀y∃*xφ) → ∃*x∃y(y = A ∧ φ)) | |
| 5 | 1, 3, 4 | mp2an 653 | 1 ⊢ ∃*x∃y(y = A ∧ φ) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 358 ∀wal 1540 ∃wex 1541 = wceq 1642 ∃*wmo 2205 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-v 2862 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |