NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ltfinasym GIF version

Theorem ltfinasym 4461
Description: Asymmetry law for finite less than. (Contributed by SF, 29-Jan-2015.)
Assertion
Ref Expression
ltfinasym ((A Nn B Nn ) → (⟪A, B <fin → ¬ ⟪B, A <fin ))

Proof of Theorem ltfinasym
StepHypRef Expression
1 ltfinirr 4458 . . . 4 (A Nn → ¬ ⟪A, A <fin )
21ad2antrr 706 . . 3 (((A Nn B Nn ) A, B <fin ) → ¬ ⟪A, A <fin )
3 ltfintr 4460 . . . . 5 ((A Nn B Nn A Nn ) → ((⟪A, B <fin B, A <fin ) → ⟪A, A <fin ))
433anidm13 1240 . . . 4 ((A Nn B Nn ) → ((⟪A, B <fin B, A <fin ) → ⟪A, A <fin ))
54expdimp 426 . . 3 (((A Nn B Nn ) A, B <fin ) → (⟪B, A <fin → ⟪A, A <fin ))
62, 5mtod 168 . 2 (((A Nn B Nn ) A, B <fin ) → ¬ ⟪B, A <fin )
76ex 423 1 ((A Nn B Nn ) → (⟪A, B <fin → ¬ ⟪B, A <fin ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wa 358   wcel 1710  copk 4058   Nn cnnc 4374   <fin cltfin 4434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-0c 4378  df-addc 4379  df-nnc 4380  df-ltfin 4442
This theorem is referenced by:  tfinltfin  4502
  Copyright terms: Public domain W3C validator