Step | Hyp | Ref
| Expression |
1 | | sneq 3745 |
. . . . . . . . . . 11
⊢ (y = X →
{y} = {X}) |
2 | 1 | uneq2d 3419 |
. . . . . . . . . 10
⊢ (y = X →
(b ∪ {y}) = (b ∪
{X})) |
3 | 2 | eqeq2d 2364 |
. . . . . . . . 9
⊢ (y = X →
(x = (b
∪ {y}) ↔ x = (b ∪
{X}))) |
4 | 3 | rexbidv 2636 |
. . . . . . . 8
⊢ (y = X →
(∃b
∈ L
x = (b
∪ {y}) ↔ ∃b ∈ L x = (b ∪
{X}))) |
5 | 4 | abbidv 2468 |
. . . . . . 7
⊢ (y = X →
{x ∣
∃b ∈ L x = (b ∪
{y})} = {x ∣ ∃b ∈ L x = (b ∪
{X})}) |
6 | 5 | eleq1d 2419 |
. . . . . 6
⊢ (y = X →
({x ∣
∃b ∈ L x = (b ∪
{y})} ∈
N ↔ {x ∣ ∃b ∈ L x = (b ∪
{X})} ∈
N)) |
7 | 6 | imbi2d 307 |
. . . . 5
⊢ (y = X →
((L ∈
N → {x ∣ ∃b ∈ L x = (b ∪
{y})} ∈
N) ↔ (L ∈ N → {x
∣ ∃b ∈ L x = (b ∪
{X})} ∈
N))) |
8 | 7 | imbi2d 307 |
. . . 4
⊢ (y = X →
((N ∈
Nn → (L
∈ N
→ {x ∣ ∃b ∈ L x = (b ∪ {y})}
∈ N))
↔ (N ∈ Nn → (L ∈ N → {x
∣ ∃b ∈ L x = (b ∪
{X})} ∈
N)))) |
9 | | nnadjoinlem1 4520 |
. . . . . . 7
⊢ {n ∣ ∀l ∈ n (y ∈ ∼ ∪l → {x ∣ ∃b ∈ l x = (b ∪
{y})} ∈
n)} ∈
V |
10 | | eleq2 2414 |
. . . . . . . . . . 11
⊢ (n = 0c → ({x ∣ ∃b ∈ l x = (b ∪
{y})} ∈
n ↔ {x ∣ ∃b ∈ l x = (b ∪
{y})} ∈
0c)) |
11 | | el0c 4422 |
. . . . . . . . . . . 12
⊢ ({x ∣ ∃b ∈ l x = (b ∪
{y})} ∈
0c ↔ {x ∣ ∃b ∈ l x = (b ∪ {y})} =
∅) |
12 | | ab0 3570 |
. . . . . . . . . . . 12
⊢ ({x ∣ ∃b ∈ l x = (b ∪
{y})} = ∅ ↔ ∀x ¬
∃b ∈ l x = (b ∪
{y})) |
13 | 11, 12 | bitri 240 |
. . . . . . . . . . 11
⊢ ({x ∣ ∃b ∈ l x = (b ∪
{y})} ∈
0c ↔ ∀x ¬ ∃b ∈ l x = (b ∪ {y})) |
14 | 10, 13 | syl6bb 252 |
. . . . . . . . . 10
⊢ (n = 0c → ({x ∣ ∃b ∈ l x = (b ∪
{y})} ∈
n ↔ ∀x ¬
∃b ∈ l x = (b ∪
{y}))) |
15 | 14 | imbi2d 307 |
. . . . . . . . 9
⊢ (n = 0c → ((y ∈ ∼ ∪l → {x ∣ ∃b ∈ l x = (b ∪
{y})} ∈
n) ↔ (y ∈ ∼ ∪l → ∀x ¬
∃b ∈ l x = (b ∪
{y})))) |
16 | 15 | raleqbi1dv 2816 |
. . . . . . . 8
⊢ (n = 0c → (∀l ∈ n (y ∈ ∼ ∪l → {x ∣ ∃b ∈ l x = (b ∪
{y})} ∈
n) ↔ ∀l ∈ 0c (y ∈ ∼ ∪l → ∀x ¬
∃b ∈ l x = (b ∪
{y})))) |
17 | | df-ral 2620 |
. . . . . . . . 9
⊢ (∀l ∈ 0c (y ∈ ∼ ∪l → ∀x ¬
∃b ∈ l x = (b ∪
{y})) ↔ ∀l(l ∈
0c → (y ∈ ∼ ∪l → ∀x ¬
∃b ∈ l x = (b ∪
{y})))) |
18 | | el0c 4422 |
. . . . . . . . . . 11
⊢ (l ∈
0c ↔ l = ∅) |
19 | 18 | imbi1i 315 |
. . . . . . . . . 10
⊢ ((l ∈
0c → (y ∈ ∼ ∪l → ∀x ¬
∃b ∈ l x = (b ∪
{y}))) ↔ (l = ∅ →
(y ∈
∼ ∪l →
∀x
¬ ∃b
∈ l
x = (b
∪ {y})))) |
20 | 19 | albii 1566 |
. . . . . . . . 9
⊢ (∀l(l ∈
0c → (y ∈ ∼ ∪l → ∀x ¬
∃b ∈ l x = (b ∪
{y}))) ↔ ∀l(l = ∅ →
(y ∈
∼ ∪l →
∀x
¬ ∃b
∈ l
x = (b
∪ {y})))) |
21 | | 0ex 4111 |
. . . . . . . . . 10
⊢ ∅ ∈
V |
22 | | unieq 3901 |
. . . . . . . . . . . . 13
⊢ (l = ∅ →
∪l = ∪∅) |
23 | 22 | compleqd 3246 |
. . . . . . . . . . . 12
⊢ (l = ∅ →
∼ ∪l = ∼
∪∅) |
24 | 23 | eleq2d 2420 |
. . . . . . . . . . 11
⊢ (l = ∅ →
(y ∈
∼ ∪l ↔
y ∈ ∼
∪∅)) |
25 | | rexeq 2809 |
. . . . . . . . . . . . 13
⊢ (l = ∅ →
(∃b
∈ l
x = (b
∪ {y}) ↔ ∃b ∈ ∅ x = (b ∪
{y}))) |
26 | 25 | notbid 285 |
. . . . . . . . . . . 12
⊢ (l = ∅ →
(¬ ∃b ∈ l x = (b ∪ {y})
↔ ¬ ∃b ∈ ∅ x =
(b ∪ {y}))) |
27 | 26 | albidv 1625 |
. . . . . . . . . . 11
⊢ (l = ∅ →
(∀x
¬ ∃b
∈ l
x = (b
∪ {y}) ↔ ∀x ¬
∃b ∈ ∅ x = (b ∪
{y}))) |
28 | 24, 27 | imbi12d 311 |
. . . . . . . . . 10
⊢ (l = ∅ →
((y ∈
∼ ∪l →
∀x
¬ ∃b
∈ l
x = (b
∪ {y})) ↔ (y ∈ ∼ ∪∅ → ∀x ¬
∃b ∈ ∅ x = (b ∪
{y})))) |
29 | 21, 28 | ceqsalv 2886 |
. . . . . . . . 9
⊢ (∀l(l = ∅ →
(y ∈
∼ ∪l →
∀x
¬ ∃b
∈ l
x = (b
∪ {y}))) ↔ (y ∈ ∼ ∪∅ → ∀x ¬
∃b ∈ ∅ x = (b ∪
{y}))) |
30 | 17, 20, 29 | 3bitrri 263 |
. . . . . . . 8
⊢ ((y ∈ ∼ ∪∅ → ∀x ¬
∃b ∈ ∅ x = (b ∪
{y})) ↔ ∀l ∈ 0c (y ∈ ∼ ∪l → ∀x ¬
∃b ∈ l x = (b ∪
{y}))) |
31 | 16, 30 | syl6bbr 254 |
. . . . . . 7
⊢ (n = 0c → (∀l ∈ n (y ∈ ∼ ∪l → {x ∣ ∃b ∈ l x = (b ∪
{y})} ∈
n) ↔ (y ∈ ∼ ∪∅ → ∀x ¬
∃b ∈ ∅ x = (b ∪
{y})))) |
32 | | eleq2 2414 |
. . . . . . . . 9
⊢ (n = k →
({x ∣
∃b ∈ l x = (b ∪
{y})} ∈
n ↔ {x ∣ ∃b ∈ l x = (b ∪
{y})} ∈
k)) |
33 | 32 | imbi2d 307 |
. . . . . . . 8
⊢ (n = k →
((y ∈
∼ ∪l →
{x ∣
∃b ∈ l x = (b ∪
{y})} ∈
n) ↔ (y ∈ ∼ ∪l → {x ∣ ∃b ∈ l x = (b ∪
{y})} ∈
k))) |
34 | 33 | raleqbi1dv 2816 |
. . . . . . 7
⊢ (n = k →
(∀l
∈ n
(y ∈
∼ ∪l →
{x ∣
∃b ∈ l x = (b ∪
{y})} ∈
n) ↔ ∀l ∈ k (y ∈ ∼ ∪l → {x ∣ ∃b ∈ l x = (b ∪
{y})} ∈
k))) |
35 | | eleq2 2414 |
. . . . . . . . . 10
⊢ (n = (k
+c 1c) → ({x ∣ ∃b ∈ l x = (b ∪
{y})} ∈
n ↔ {x ∣ ∃b ∈ l x = (b ∪
{y})} ∈
(k +c
1c))) |
36 | 35 | imbi2d 307 |
. . . . . . . . 9
⊢ (n = (k
+c 1c) → ((y ∈ ∼ ∪l → {x ∣ ∃b ∈ l x = (b ∪
{y})} ∈
n) ↔ (y ∈ ∼ ∪l → {x ∣ ∃b ∈ l x = (b ∪
{y})} ∈
(k +c
1c)))) |
37 | 36 | raleqbi1dv 2816 |
. . . . . . . 8
⊢ (n = (k
+c 1c) → (∀l ∈ n (y ∈ ∼ ∪l → {x ∣ ∃b ∈ l x = (b ∪
{y})} ∈
n) ↔ ∀l ∈ (k
+c 1c)(y ∈ ∼ ∪l → {x ∣ ∃b ∈ l x = (b ∪
{y})} ∈
(k +c
1c)))) |
38 | | unieq 3901 |
. . . . . . . . . . . 12
⊢ (l = a →
∪l = ∪a) |
39 | 38 | compleqd 3246 |
. . . . . . . . . . 11
⊢ (l = a →
∼ ∪l = ∼
∪a) |
40 | 39 | eleq2d 2420 |
. . . . . . . . . 10
⊢ (l = a →
(y ∈
∼ ∪l ↔
y ∈ ∼
∪a)) |
41 | | rexeq 2809 |
. . . . . . . . . . . 12
⊢ (l = a →
(∃b
∈ l
x = (b
∪ {y}) ↔ ∃b ∈ a x = (b ∪
{y}))) |
42 | 41 | abbidv 2468 |
. . . . . . . . . . 11
⊢ (l = a →
{x ∣
∃b ∈ l x = (b ∪
{y})} = {x ∣ ∃b ∈ a x = (b ∪
{y})}) |
43 | 42 | eleq1d 2419 |
. . . . . . . . . 10
⊢ (l = a →
({x ∣
∃b ∈ l x = (b ∪
{y})} ∈
(k +c
1c) ↔ {x ∣ ∃b ∈ a x = (b ∪ {y})}
∈ (k
+c 1c))) |
44 | 40, 43 | imbi12d 311 |
. . . . . . . . 9
⊢ (l = a →
((y ∈
∼ ∪l →
{x ∣
∃b ∈ l x = (b ∪
{y})} ∈
(k +c
1c)) ↔ (y ∈ ∼ ∪a → {x
∣ ∃b ∈ a x = (b ∪
{y})} ∈
(k +c
1c)))) |
45 | 44 | cbvralv 2836 |
. . . . . . . 8
⊢ (∀l ∈ (k
+c 1c)(y ∈ ∼ ∪l → {x ∣ ∃b ∈ l x = (b ∪
{y})} ∈
(k +c
1c)) ↔ ∀a ∈ (k +c
1c)(y ∈ ∼ ∪a → {x
∣ ∃b ∈ a x = (b ∪
{y})} ∈
(k +c
1c))) |
46 | 37, 45 | syl6bb 252 |
. . . . . . 7
⊢ (n = (k
+c 1c) → (∀l ∈ n (y ∈ ∼ ∪l → {x ∣ ∃b ∈ l x = (b ∪
{y})} ∈
n) ↔ ∀a ∈ (k
+c 1c)(y ∈ ∼ ∪a → {x ∣ ∃b ∈ a x = (b ∪
{y})} ∈
(k +c
1c)))) |
47 | | eleq2 2414 |
. . . . . . . . 9
⊢ (n = N →
({x ∣
∃b ∈ l x = (b ∪
{y})} ∈
n ↔ {x ∣ ∃b ∈ l x = (b ∪
{y})} ∈
N)) |
48 | 47 | imbi2d 307 |
. . . . . . . 8
⊢ (n = N →
((y ∈
∼ ∪l →
{x ∣
∃b ∈ l x = (b ∪
{y})} ∈
n) ↔ (y ∈ ∼ ∪l → {x ∣ ∃b ∈ l x = (b ∪
{y})} ∈
N))) |
49 | 48 | raleqbi1dv 2816 |
. . . . . . 7
⊢ (n = N →
(∀l
∈ n
(y ∈
∼ ∪l →
{x ∣
∃b ∈ l x = (b ∪
{y})} ∈
n) ↔ ∀l ∈ N (y ∈ ∼ ∪l → {x ∣ ∃b ∈ l x = (b ∪
{y})} ∈
N))) |
50 | | rex0 3564 |
. . . . . . . . 9
⊢ ¬ ∃b ∈ ∅ x = (b ∪
{y}) |
51 | 50 | ax-gen 1546 |
. . . . . . . 8
⊢ ∀x ¬
∃b ∈ ∅ x = (b ∪
{y}) |
52 | 51 | a1i 10 |
. . . . . . 7
⊢ (y ∈ ∼ ∪∅ → ∀x ¬
∃b ∈ ∅ x = (b ∪
{y})) |
53 | | elsuc 4414 |
. . . . . . . . . 10
⊢ (a ∈ (k +c 1c) ↔
∃c ∈ k ∃z ∈ ∼ ca = (c ∪ {z})) |
54 | | unieq 3901 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (l = c →
∪l = ∪c) |
55 | 54 | compleqd 3246 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (l = c →
∼ ∪l = ∼
∪c) |
56 | 55 | eleq2d 2420 |
. . . . . . . . . . . . . . . . . . 19
⊢ (l = c →
(y ∈
∼ ∪l ↔
y ∈ ∼
∪c)) |
57 | | rexeq 2809 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (l = c →
(∃b
∈ l
x = (b
∪ {y}) ↔ ∃b ∈ c x = (b ∪
{y}))) |
58 | 57 | abbidv 2468 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (l = c →
{x ∣
∃b ∈ l x = (b ∪
{y})} = {x ∣ ∃b ∈ c x = (b ∪
{y})}) |
59 | 58 | eleq1d 2419 |
. . . . . . . . . . . . . . . . . . 19
⊢ (l = c →
({x ∣
∃b ∈ l x = (b ∪
{y})} ∈
k ↔ {x ∣ ∃b ∈ c x = (b ∪
{y})} ∈
k)) |
60 | 56, 59 | imbi12d 311 |
. . . . . . . . . . . . . . . . . 18
⊢ (l = c →
((y ∈
∼ ∪l →
{x ∣
∃b ∈ l x = (b ∪
{y})} ∈
k) ↔ (y ∈ ∼ ∪c → {x ∣ ∃b ∈ c x = (b ∪
{y})} ∈
k))) |
61 | 60 | rspcv 2952 |
. . . . . . . . . . . . . . . . 17
⊢ (c ∈ k → (∀l ∈ k (y ∈ ∼ ∪l → {x ∣ ∃b ∈ l x = (b ∪
{y})} ∈
k) → (y ∈ ∼ ∪c → {x ∣ ∃b ∈ c x = (b ∪
{y})} ∈
k))) |
62 | 61 | adantr 451 |
. . . . . . . . . . . . . . . 16
⊢ ((c ∈ k ∧ z ∈ ∼ c) → (∀l ∈ k (y ∈ ∼ ∪l → {x ∣ ∃b ∈ l x = (b ∪
{y})} ∈
k) → (y ∈ ∼ ∪c → {x ∣ ∃b ∈ c x = (b ∪
{y})} ∈
k))) |
63 | 62 | adantl 452 |
. . . . . . . . . . . . . . 15
⊢ ((k ∈ Nn ∧ (c ∈ k ∧ z ∈ ∼ c)) → (∀l ∈ k (y ∈ ∼ ∪l → {x ∣ ∃b ∈ l x = (b ∪
{y})} ∈
k) → (y ∈ ∼ ∪c → {x ∣ ∃b ∈ c x = (b ∪
{y})} ∈
k))) |
64 | | elin 3220 |
. . . . . . . . . . . . . . . . 17
⊢ (y ∈ ( ∼ ∪c ∩ ∼ ∪{z}) ↔ (y ∈ ∼ ∪c ∧ y ∈ ∼ ∪{z})) |
65 | | simp3l 983 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((k ∈ Nn ∧ (c ∈ k ∧ z ∈ ∼ c) ∧ (y ∈ ∼ ∪c ∧ y ∈ ∼ ∪{z})) → y
∈ ∼ ∪c) |
66 | | vex 2863 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ z ∈
V |
67 | 66 | unisn 3908 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ∪{z} = z |
68 | 67 | compleqi 3245 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ∼ ∪{z} = ∼ z |
69 | 68 | eleq2i 2417 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (y ∈ ∼ ∪{z} ↔ y ∈ ∼ z) |
70 | 69 | anbi2i 675 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((y ∈ ∼ ∪c ∧ y ∈ ∼ ∪{z}) ↔ (y
∈ ∼ ∪c ∧ y ∈ ∼ z)) |
71 | | simpr 447 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((k ∈ Nn ∧ (c ∈ k ∧ z ∈ ∼ c) ∧ (y ∈ ∼ ∪c ∧ y ∈ ∼ z))
∧ {x ∣ ∃b ∈ c x = (b ∪ {y})}
∈ k)
→ {x ∣ ∃b ∈ c x = (b ∪ {y})}
∈ k) |
72 | | simpl2r 1009 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((k ∈ Nn ∧ (c ∈ k ∧ z ∈ ∼ c) ∧ (y ∈ ∼ ∪c ∧ y ∈ ∼ z))
∧ b ∈ c) →
z ∈ ∼
c) |
73 | 66 | elcompl 3226 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (z ∈ ∼ c ↔ ¬ z
∈ c) |
74 | 72, 73 | sylib 188 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((k ∈ Nn ∧ (c ∈ k ∧ z ∈ ∼ c) ∧ (y ∈ ∼ ∪c ∧ y ∈ ∼ z))
∧ b ∈ c) →
¬ z ∈
c) |
75 | | eleq1a 2422 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (b ∈ c → (z =
b → z ∈ c)) |
76 | 75 | adantl 452 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((k ∈ Nn ∧ (c ∈ k ∧ z ∈ ∼ c) ∧ (y ∈ ∼ ∪c ∧ y ∈ ∼ z))
∧ b ∈ c) →
(z = b
→ z ∈ c)) |
77 | 74, 76 | mtod 168 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((k ∈ Nn ∧ (c ∈ k ∧ z ∈ ∼ c) ∧ (y ∈ ∼ ∪c ∧ y ∈ ∼ z))
∧ b ∈ c) →
¬ z = b) |
78 | | simpl3r 1011 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((k ∈ Nn ∧ (c ∈ k ∧ z ∈ ∼ c) ∧ (y ∈ ∼ ∪c ∧ y ∈ ∼ z))
∧ b ∈ c) →
y ∈ ∼
z) |
79 | | vex 2863 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ y ∈
V |
80 | 79 | elcompl 3226 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (y ∈ ∼ z ↔ ¬ y
∈ z) |
81 | 78, 80 | sylib 188 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((k ∈ Nn ∧ (c ∈ k ∧ z ∈ ∼ c) ∧ (y ∈ ∼ ∪c ∧ y ∈ ∼ z))
∧ b ∈ c) →
¬ y ∈
z) |
82 | | simp3l 983 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((k ∈ Nn ∧ (c ∈ k ∧ z ∈ ∼ c) ∧ (y ∈ ∼ ∪c ∧ y ∈ ∼ z))
→ y ∈ ∼ ∪c) |
83 | 79 | elcompl 3226 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (y ∈ ∼ ∪c ↔ ¬
y ∈ ∪c) |
84 | 82, 83 | sylib 188 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((k ∈ Nn ∧ (c ∈ k ∧ z ∈ ∼ c) ∧ (y ∈ ∼ ∪c ∧ y ∈ ∼ z))
→ ¬ y ∈ ∪c) |
85 | | elunii 3897 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((y ∈ b ∧ b ∈ c) → y
∈ ∪c) |
86 | 85 | expcom 424 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (b ∈ c → (y
∈ b
→ y ∈ ∪c)) |
87 | 86 | con3d 125 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (b ∈ c → (¬ y ∈ ∪c → ¬
y ∈
b)) |
88 | 84, 87 | mpan9 455 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((k ∈ Nn ∧ (c ∈ k ∧ z ∈ ∼ c) ∧ (y ∈ ∼ ∪c ∧ y ∈ ∼ z))
∧ b ∈ c) →
¬ y ∈
b) |
89 | | adj11 3890 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((¬ y ∈ z ∧ ¬ y ∈ b) → ((z
∪ {y}) = (b ∪ {y})
↔ z = b)) |
90 | 81, 88, 89 | syl2anc 642 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((k ∈ Nn ∧ (c ∈ k ∧ z ∈ ∼ c) ∧ (y ∈ ∼ ∪c ∧ y ∈ ∼ z))
∧ b ∈ c) →
((z ∪ {y}) = (b ∪
{y}) ↔ z = b)) |
91 | 77, 90 | mtbird 292 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((k ∈ Nn ∧ (c ∈ k ∧ z ∈ ∼ c) ∧ (y ∈ ∼ ∪c ∧ y ∈ ∼ z))
∧ b ∈ c) →
¬ (z ∪ {y}) = (b ∪
{y})) |
92 | 91 | nrexdv 2718 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((k ∈ Nn ∧ (c ∈ k ∧ z ∈ ∼ c) ∧ (y ∈ ∼ ∪c ∧ y ∈ ∼ z))
→ ¬ ∃b ∈ c (z ∪
{y}) = (b ∪ {y})) |
93 | | eqeq1 2359 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (x = (z ∪
{y}) → (x = (b ∪
{y}) ↔ (z ∪ {y}) =
(b ∪ {y}))) |
94 | 93 | rexbidv 2636 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (x = (z ∪
{y}) → (∃b ∈ c x = (b ∪
{y}) ↔ ∃b ∈ c (z ∪ {y}) =
(b ∪ {y}))) |
95 | 94 | elabg 2987 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((z ∪ {y})
∈ {x
∣ ∃b ∈ c x = (b ∪
{y})} → ((z ∪ {y})
∈ {x
∣ ∃b ∈ c x = (b ∪
{y})} ↔ ∃b ∈ c (z ∪ {y}) =
(b ∪ {y}))) |
96 | 95 | ibi 232 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((z ∪ {y})
∈ {x
∣ ∃b ∈ c x = (b ∪
{y})} → ∃b ∈ c (z ∪ {y}) =
(b ∪ {y})) |
97 | 92, 96 | nsyl 113 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((k ∈ Nn ∧ (c ∈ k ∧ z ∈ ∼ c) ∧ (y ∈ ∼ ∪c ∧ y ∈ ∼ z))
→ ¬ (z ∪ {y}) ∈ {x ∣ ∃b ∈ c x = (b ∪
{y})}) |
98 | 97 | adantr 451 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((k ∈ Nn ∧ (c ∈ k ∧ z ∈ ∼ c) ∧ (y ∈ ∼ ∪c ∧ y ∈ ∼ z))
∧ {x ∣ ∃b ∈ c x = (b ∪ {y})}
∈ k)
→ ¬ (z ∪ {y}) ∈ {x ∣ ∃b ∈ c x = (b ∪
{y})}) |
99 | | snex 4112 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ {y} ∈
V |
100 | 66, 99 | unex 4107 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (z ∪ {y})
∈ V |
101 | 100 | elsuci 4415 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (({x ∣ ∃b ∈ c x = (b ∪
{y})} ∈
k ∧ ¬
(z ∪ {y}) ∈ {x ∣ ∃b ∈ c x = (b ∪
{y})}) → ({x ∣ ∃b ∈ c x = (b ∪
{y})} ∪ {(z ∪ {y})})
∈ (k
+c 1c)) |
102 | 71, 98, 101 | syl2anc 642 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((k ∈ Nn ∧ (c ∈ k ∧ z ∈ ∼ c) ∧ (y ∈ ∼ ∪c ∧ y ∈ ∼ z))
∧ {x ∣ ∃b ∈ c x = (b ∪ {y})}
∈ k)
→ ({x ∣ ∃b ∈ c x = (b ∪ {y})}
∪ {(z ∪ {y})}) ∈ (k +c
1c)) |
103 | 102 | ex 423 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((k ∈ Nn ∧ (c ∈ k ∧ z ∈ ∼ c) ∧ (y ∈ ∼ ∪c ∧ y ∈ ∼ z))
→ ({x ∣ ∃b ∈ c x = (b ∪ {y})}
∈ k
→ ({x ∣ ∃b ∈ c x = (b ∪ {y})}
∪ {(z ∪ {y})}) ∈ (k +c
1c))) |
104 | 70, 103 | syl3an3b 1220 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((k ∈ Nn ∧ (c ∈ k ∧ z ∈ ∼ c) ∧ (y ∈ ∼ ∪c ∧ y ∈ ∼ ∪{z})) → ({x
∣ ∃b ∈ c x = (b ∪
{y})} ∈
k → ({x ∣ ∃b ∈ c x = (b ∪
{y})} ∪ {(z ∪ {y})})
∈ (k
+c 1c))) |
105 | 65, 104 | embantd 50 |
. . . . . . . . . . . . . . . . . 18
⊢ ((k ∈ Nn ∧ (c ∈ k ∧ z ∈ ∼ c) ∧ (y ∈ ∼ ∪c ∧ y ∈ ∼ ∪{z})) → ((y
∈ ∼ ∪c → {x
∣ ∃b ∈ c x = (b ∪
{y})} ∈
k) → ({x ∣ ∃b ∈ c x = (b ∪
{y})} ∪ {(z ∪ {y})})
∈ (k
+c 1c))) |
106 | 105 | 3expia 1153 |
. . . . . . . . . . . . . . . . 17
⊢ ((k ∈ Nn ∧ (c ∈ k ∧ z ∈ ∼ c)) → ((y
∈ ∼ ∪c ∧ y ∈ ∼ ∪{z}) →
((y ∈
∼ ∪c →
{x ∣
∃b ∈ c x = (b ∪
{y})} ∈
k) → ({x ∣ ∃b ∈ c x = (b ∪
{y})} ∪ {(z ∪ {y})})
∈ (k
+c 1c)))) |
107 | 64, 106 | syl5bi 208 |
. . . . . . . . . . . . . . . 16
⊢ ((k ∈ Nn ∧ (c ∈ k ∧ z ∈ ∼ c)) → (y
∈ ( ∼ ∪c ∩ ∼ ∪{z}) →
((y ∈
∼ ∪c →
{x ∣
∃b ∈ c x = (b ∪
{y})} ∈
k) → ({x ∣ ∃b ∈ c x = (b ∪
{y})} ∪ {(z ∪ {y})})
∈ (k
+c 1c)))) |
108 | 107 | com23 72 |
. . . . . . . . . . . . . . 15
⊢ ((k ∈ Nn ∧ (c ∈ k ∧ z ∈ ∼ c)) → ((y
∈ ∼ ∪c → {x
∣ ∃b ∈ c x = (b ∪
{y})} ∈
k) → (y ∈ ( ∼ ∪c ∩ ∼ ∪{z}) →
({x ∣
∃b ∈ c x = (b ∪
{y})} ∪ {(z ∪ {y})})
∈ (k
+c 1c)))) |
109 | 63, 108 | syld 40 |
. . . . . . . . . . . . . 14
⊢ ((k ∈ Nn ∧ (c ∈ k ∧ z ∈ ∼ c)) → (∀l ∈ k (y ∈ ∼ ∪l → {x ∣ ∃b ∈ l x = (b ∪
{y})} ∈
k) → (y ∈ ( ∼ ∪c ∩ ∼ ∪{z}) →
({x ∣
∃b ∈ c x = (b ∪
{y})} ∪ {(z ∪ {y})})
∈ (k
+c 1c)))) |
110 | 109 | imp 418 |
. . . . . . . . . . . . 13
⊢ (((k ∈ Nn ∧ (c ∈ k ∧ z ∈ ∼ c)) ∧ ∀l ∈ k (y ∈ ∼ ∪l → {x ∣ ∃b ∈ l x = (b ∪
{y})} ∈
k)) → (y ∈ ( ∼ ∪c ∩ ∼ ∪{z}) →
({x ∣
∃b ∈ c x = (b ∪
{y})} ∪ {(z ∪ {y})})
∈ (k
+c 1c))) |
111 | 110 | an32s 779 |
. . . . . . . . . . . 12
⊢ (((k ∈ Nn ∧ ∀l ∈ k (y ∈ ∼ ∪l → {x ∣ ∃b ∈ l x = (b ∪
{y})} ∈
k)) ∧
(c ∈
k ∧
z ∈ ∼
c)) → (y ∈ ( ∼ ∪c ∩ ∼ ∪{z}) →
({x ∣
∃b ∈ c x = (b ∪
{y})} ∪ {(z ∪ {y})})
∈ (k
+c 1c))) |
112 | | unieq 3901 |
. . . . . . . . . . . . . . . 16
⊢ (a = (c ∪
{z}) → ∪a = ∪(c ∪ {z})) |
113 | 112 | compleqd 3246 |
. . . . . . . . . . . . . . 15
⊢ (a = (c ∪
{z}) → ∼ ∪a = ∼ ∪(c ∪ {z})) |
114 | | uniun 3911 |
. . . . . . . . . . . . . . . . 17
⊢ ∪(c ∪ {z}) = (∪c ∪ ∪{z}) |
115 | 114 | compleqi 3245 |
. . . . . . . . . . . . . . . 16
⊢ ∼ ∪(c ∪ {z}) = ∼ (∪c ∪ ∪{z}) |
116 | | iunin 3548 |
. . . . . . . . . . . . . . . 16
⊢ ∼ (∪c ∪ ∪{z}) = ( ∼ ∪c ∩ ∼ ∪{z}) |
117 | 115, 116 | eqtri 2373 |
. . . . . . . . . . . . . . 15
⊢ ∼ ∪(c ∪ {z}) = ( ∼ ∪c ∩ ∼ ∪{z}) |
118 | 113, 117 | syl6eq 2401 |
. . . . . . . . . . . . . 14
⊢ (a = (c ∪
{z}) → ∼ ∪a = ( ∼ ∪c ∩ ∼ ∪{z})) |
119 | 118 | eleq2d 2420 |
. . . . . . . . . . . . 13
⊢ (a = (c ∪
{z}) → (y ∈ ∼ ∪a ↔ y ∈ ( ∼ ∪c ∩ ∼ ∪{z}))) |
120 | | rexeq 2809 |
. . . . . . . . . . . . . . . 16
⊢ (a = (c ∪
{z}) → (∃b ∈ a x = (b ∪
{y}) ↔ ∃b ∈ (c ∪
{z})x =
(b ∪ {y}))) |
121 | 120 | abbidv 2468 |
. . . . . . . . . . . . . . 15
⊢ (a = (c ∪
{z}) → {x ∣ ∃b ∈ a x = (b ∪
{y})} = {x ∣ ∃b ∈ (c ∪
{z})x =
(b ∪ {y})}) |
122 | | unab 3522 |
. . . . . . . . . . . . . . . 16
⊢ ({x ∣ ∃b ∈ c x = (b ∪
{y})} ∪ {x ∣ x = (z ∪
{y})}) = {x ∣ (∃b ∈ c x = (b ∪
{y}) ∨
x = (z
∪ {y}))} |
123 | | df-sn 3742 |
. . . . . . . . . . . . . . . . 17
⊢ {(z ∪ {y})} =
{x ∣
x = (z
∪ {y})} |
124 | 123 | uneq2i 3416 |
. . . . . . . . . . . . . . . 16
⊢ ({x ∣ ∃b ∈ c x = (b ∪
{y})} ∪ {(z ∪ {y})}) =
({x ∣
∃b ∈ c x = (b ∪
{y})} ∪ {x ∣ x = (z ∪
{y})}) |
125 | | rexun 3444 |
. . . . . . . . . . . . . . . . . 18
⊢ (∃b ∈ (c ∪
{z})x =
(b ∪ {y}) ↔ (∃b ∈ c x = (b ∪
{y}) ∨
∃b ∈ {z}x = (b ∪
{y}))) |
126 | | uneq1 3412 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (b = z →
(b ∪ {y}) = (z ∪
{y})) |
127 | 126 | eqeq2d 2364 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (b = z →
(x = (b
∪ {y}) ↔ x = (z ∪
{y}))) |
128 | 66, 127 | rexsn 3769 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∃b ∈ {z}x = (b ∪
{y}) ↔ x = (z ∪
{y})) |
129 | 128 | orbi2i 505 |
. . . . . . . . . . . . . . . . . 18
⊢ ((∃b ∈ c x = (b ∪
{y}) ∨
∃b ∈ {z}x = (b ∪
{y})) ↔ (∃b ∈ c x = (b ∪
{y}) ∨
x = (z
∪ {y}))) |
130 | 125, 129 | bitri 240 |
. . . . . . . . . . . . . . . . 17
⊢ (∃b ∈ (c ∪
{z})x =
(b ∪ {y}) ↔ (∃b ∈ c x = (b ∪
{y}) ∨
x = (z
∪ {y}))) |
131 | 130 | abbii 2466 |
. . . . . . . . . . . . . . . 16
⊢ {x ∣ ∃b ∈ (c ∪
{z})x =
(b ∪ {y})} = {x ∣ (∃b ∈ c x = (b ∪ {y})
∨ x =
(z ∪ {y}))} |
132 | 122, 124,
131 | 3eqtr4ri 2384 |
. . . . . . . . . . . . . . 15
⊢ {x ∣ ∃b ∈ (c ∪
{z})x =
(b ∪ {y})} = ({x ∣ ∃b ∈ c x = (b ∪ {y})}
∪ {(z ∪ {y})}) |
133 | 121, 132 | syl6eq 2401 |
. . . . . . . . . . . . . 14
⊢ (a = (c ∪
{z}) → {x ∣ ∃b ∈ a x = (b ∪
{y})} = ({x ∣ ∃b ∈ c x = (b ∪
{y})} ∪ {(z ∪ {y})})) |
134 | 133 | eleq1d 2419 |
. . . . . . . . . . . . 13
⊢ (a = (c ∪
{z}) → ({x ∣ ∃b ∈ a x = (b ∪
{y})} ∈
(k +c
1c) ↔ ({x ∣ ∃b ∈ c x = (b ∪ {y})}
∪ {(z ∪ {y})}) ∈ (k +c
1c))) |
135 | 119, 134 | imbi12d 311 |
. . . . . . . . . . . 12
⊢ (a = (c ∪
{z}) → ((y ∈ ∼ ∪a → {x ∣ ∃b ∈ a x = (b ∪
{y})} ∈
(k +c
1c)) ↔ (y ∈ ( ∼ ∪c ∩ ∼ ∪{z}) → ({x
∣ ∃b ∈ c x = (b ∪
{y})} ∪ {(z ∪ {y})})
∈ (k
+c 1c)))) |
136 | 111, 135 | syl5ibrcom 213 |
. . . . . . . . . . 11
⊢ (((k ∈ Nn ∧ ∀l ∈ k (y ∈ ∼ ∪l → {x ∣ ∃b ∈ l x = (b ∪
{y})} ∈
k)) ∧
(c ∈
k ∧
z ∈ ∼
c)) → (a = (c ∪
{z}) → (y ∈ ∼ ∪a → {x ∣ ∃b ∈ a x = (b ∪
{y})} ∈
(k +c
1c)))) |
137 | 136 | rexlimdvva 2746 |
. . . . . . . . . 10
⊢ ((k ∈ Nn ∧ ∀l ∈ k (y ∈ ∼ ∪l → {x ∣ ∃b ∈ l x = (b ∪
{y})} ∈
k)) → (∃c ∈ k ∃z ∈ ∼ ca = (c ∪ {z})
→ (y ∈ ∼ ∪a → {x
∣ ∃b ∈ a x = (b ∪
{y})} ∈
(k +c
1c)))) |
138 | 53, 137 | syl5bi 208 |
. . . . . . . . 9
⊢ ((k ∈ Nn ∧ ∀l ∈ k (y ∈ ∼ ∪l → {x ∣ ∃b ∈ l x = (b ∪
{y})} ∈
k)) → (a ∈ (k +c 1c) →
(y ∈
∼ ∪a →
{x ∣
∃b ∈ a x = (b ∪
{y})} ∈
(k +c
1c)))) |
139 | 138 | ralrimiv 2697 |
. . . . . . . 8
⊢ ((k ∈ Nn ∧ ∀l ∈ k (y ∈ ∼ ∪l → {x ∣ ∃b ∈ l x = (b ∪
{y})} ∈
k)) → ∀a ∈ (k
+c 1c)(y ∈ ∼ ∪a → {x ∣ ∃b ∈ a x = (b ∪
{y})} ∈
(k +c
1c))) |
140 | 139 | ex 423 |
. . . . . . 7
⊢ (k ∈ Nn → (∀l ∈ k (y ∈ ∼ ∪l → {x
∣ ∃b ∈ l x = (b ∪
{y})} ∈
k) → ∀a ∈ (k
+c 1c)(y ∈ ∼ ∪a → {x ∣ ∃b ∈ a x = (b ∪
{y})} ∈
(k +c
1c)))) |
141 | 9, 31, 34, 46, 49, 52, 140 | finds 4412 |
. . . . . 6
⊢ (N ∈ Nn → ∀l ∈ N (y ∈ ∼ ∪l → {x
∣ ∃b ∈ l x = (b ∪
{y})} ∈
N)) |
142 | | unieq 3901 |
. . . . . . . . . 10
⊢ (l = L →
∪l = ∪L) |
143 | 142 | compleqd 3246 |
. . . . . . . . 9
⊢ (l = L →
∼ ∪l = ∼
∪L) |
144 | 143 | eleq2d 2420 |
. . . . . . . 8
⊢ (l = L →
(y ∈
∼ ∪l ↔
y ∈ ∼
∪L)) |
145 | | rexeq 2809 |
. . . . . . . . . 10
⊢ (l = L →
(∃b
∈ l
x = (b
∪ {y}) ↔ ∃b ∈ L x = (b ∪
{y}))) |
146 | 145 | abbidv 2468 |
. . . . . . . . 9
⊢ (l = L →
{x ∣
∃b ∈ l x = (b ∪
{y})} = {x ∣ ∃b ∈ L x = (b ∪
{y})}) |
147 | 146 | eleq1d 2419 |
. . . . . . . 8
⊢ (l = L →
({x ∣
∃b ∈ l x = (b ∪
{y})} ∈
N ↔ {x ∣ ∃b ∈ L x = (b ∪
{y})} ∈
N)) |
148 | 144, 147 | imbi12d 311 |
. . . . . . 7
⊢ (l = L →
((y ∈
∼ ∪l →
{x ∣
∃b ∈ l x = (b ∪
{y})} ∈
N) ↔ (y ∈ ∼ ∪L → {x ∣ ∃b ∈ L x = (b ∪
{y})} ∈
N))) |
149 | 148 | rspccv 2953 |
. . . . . 6
⊢ (∀l ∈ N (y ∈ ∼ ∪l → {x ∣ ∃b ∈ l x = (b ∪
{y})} ∈
N) → (L ∈ N → (y
∈ ∼ ∪L → {x
∣ ∃b ∈ L x = (b ∪
{y})} ∈
N))) |
150 | 141, 149 | syl 15 |
. . . . 5
⊢ (N ∈ Nn → (L ∈ N →
(y ∈
∼ ∪L →
{x ∣
∃b ∈ L x = (b ∪
{y})} ∈
N))) |
151 | 150 | com3r 73 |
. . . 4
⊢ (y ∈ ∼ ∪L → (N ∈ Nn → (L ∈ N →
{x ∣
∃b ∈ L x = (b ∪
{y})} ∈
N))) |
152 | 8, 151 | vtoclga 2921 |
. . 3
⊢ (X ∈ ∼ ∪L → (N ∈ Nn → (L ∈ N →
{x ∣
∃b ∈ L x = (b ∪
{X})} ∈
N))) |
153 | 152 | com3l 75 |
. 2
⊢ (N ∈ Nn → (L ∈ N →
(X ∈
∼ ∪L →
{x ∣
∃b ∈ L x = (b ∪
{X})} ∈
N))) |
154 | 153 | 3imp 1145 |
1
⊢ ((N ∈ Nn ∧ L ∈ N ∧ X ∈ ∼ ∪L) → {x ∣ ∃b ∈ L x = (b ∪
{X})} ∈
N) |