Proof of Theorem lenltfin
Step | Hyp | Ref
| Expression |
1 | | ltfinirr 4458 |
. . . . . 6
⊢ (A ∈ Nn → ¬ ⟪A, A⟫
∈ <fin ) |
2 | 1 | adantr 451 |
. . . . 5
⊢ ((A ∈ Nn ∧ B ∈ Nn ) → ¬ ⟪A, A⟫
∈ <fin ) |
3 | 2 | adantr 451 |
. . . 4
⊢ (((A ∈ Nn ∧ B ∈ Nn ) ∧ ⟪A, B⟫
∈ ≤fin ) → ¬
⟪A, A⟫ ∈
<fin ) |
4 | | leltfintr 4459 |
. . . . . 6
⊢ ((A ∈ Nn ∧ B ∈ Nn ∧ A ∈ Nn ) → ((⟪A, B⟫
∈ ≤fin ∧ ⟪B,
A⟫ ∈ <fin ) → ⟪A, A⟫
∈ <fin )) |
5 | 4 | 3anidm13 1240 |
. . . . 5
⊢ ((A ∈ Nn ∧ B ∈ Nn ) → ((⟪A, B⟫
∈ ≤fin ∧ ⟪B,
A⟫ ∈ <fin ) → ⟪A, A⟫
∈ <fin )) |
6 | 5 | expdimp 426 |
. . . 4
⊢ (((A ∈ Nn ∧ B ∈ Nn ) ∧ ⟪A, B⟫
∈ ≤fin ) →
(⟪B, A⟫ ∈
<fin → ⟪A,
A⟫ ∈ <fin )) |
7 | 3, 6 | mtod 168 |
. . 3
⊢ (((A ∈ Nn ∧ B ∈ Nn ) ∧ ⟪A, B⟫
∈ ≤fin ) → ¬
⟪B, A⟫ ∈
<fin ) |
8 | 7 | ex 423 |
. 2
⊢ ((A ∈ Nn ∧ B ∈ Nn ) → (⟪A, B⟫
∈ ≤fin → ¬
⟪B, A⟫ ∈
<fin )) |
9 | | nulge 4457 |
. . . . . 6
⊢ ((∅ ∈ Nn ∧ A ∈ Nn ) → ⟪A, ∅⟫
∈ ≤fin ) |
10 | 9 | ancoms 439 |
. . . . 5
⊢ ((A ∈ Nn ∧ ∅ ∈ Nn ) → ⟪A, ∅⟫
∈ ≤fin ) |
11 | | eleq1 2413 |
. . . . . . 7
⊢ (B = ∅ →
(B ∈
Nn ↔ ∅
∈ Nn
)) |
12 | 11 | anbi2d 684 |
. . . . . 6
⊢ (B = ∅ →
((A ∈
Nn ∧ B ∈ Nn ) ↔ (A ∈ Nn ∧ ∅ ∈ Nn
))) |
13 | | opkeq2 4061 |
. . . . . . 7
⊢ (B = ∅ →
⟪A, B⟫ = ⟪A, ∅⟫) |
14 | 13 | eleq1d 2419 |
. . . . . 6
⊢ (B = ∅ →
(⟪A, B⟫ ∈
≤fin ↔ ⟪A, ∅⟫ ∈
≤fin )) |
15 | 12, 14 | imbi12d 311 |
. . . . 5
⊢ (B = ∅ →
(((A ∈
Nn ∧ B ∈ Nn ) → ⟪A, B⟫
∈ ≤fin ) ↔ ((A ∈ Nn ∧ ∅ ∈ Nn ) → ⟪A, ∅⟫
∈ ≤fin ))) |
16 | 10, 15 | mpbiri 224 |
. . . 4
⊢ (B = ∅ →
((A ∈
Nn ∧ B ∈ Nn ) → ⟪A, B⟫
∈ ≤fin )) |
17 | 16 | a1dd 42 |
. . 3
⊢ (B = ∅ →
((A ∈
Nn ∧ B ∈ Nn ) → (¬ ⟪B, A⟫
∈ <fin → ⟪A, B⟫
∈ ≤fin ))) |
18 | | simplr 731 |
. . . . . . . 8
⊢ (((A ∈ Nn ∧ B ∈ Nn ) ∧ B ≠ ∅) →
B ∈ Nn ) |
19 | | simpll 730 |
. . . . . . . 8
⊢ (((A ∈ Nn ∧ B ∈ Nn ) ∧ B ≠ ∅) →
A ∈ Nn ) |
20 | | simpr 447 |
. . . . . . . 8
⊢ (((A ∈ Nn ∧ B ∈ Nn ) ∧ B ≠ ∅) →
B ≠ ∅) |
21 | | ltfintri 4467 |
. . . . . . . 8
⊢ ((B ∈ Nn ∧ A ∈ Nn ∧ B ≠ ∅) →
(⟪B, A⟫ ∈
<fin ∨ B = A ∨ ⟪A,
B⟫ ∈ <fin )) |
22 | 18, 19, 20, 21 | syl3anc 1182 |
. . . . . . 7
⊢ (((A ∈ Nn ∧ B ∈ Nn ) ∧ B ≠ ∅) →
(⟪B, A⟫ ∈
<fin ∨ B = A ∨ ⟪A,
B⟫ ∈ <fin )) |
23 | | 3orass 937 |
. . . . . . 7
⊢ ((⟪B, A⟫
∈ <fin
∨ B = A ∨
⟪A, B⟫ ∈
<fin ) ↔ (⟪B,
A⟫ ∈ <fin
∨ (B = A ∨
⟪A, B⟫ ∈
<fin ))) |
24 | 22, 23 | sylib 188 |
. . . . . 6
⊢ (((A ∈ Nn ∧ B ∈ Nn ) ∧ B ≠ ∅) →
(⟪B, A⟫ ∈
<fin ∨ (B = A ∨ ⟪A,
B⟫ ∈ <fin ))) |
25 | 24 | ord 366 |
. . . . 5
⊢ (((A ∈ Nn ∧ B ∈ Nn ) ∧ B ≠ ∅) →
(¬ ⟪B, A⟫ ∈
<fin → (B = A ∨
⟪A, B⟫ ∈
<fin ))) |
26 | | lefinrflx 4468 |
. . . . . . . . 9
⊢ (A ∈ Nn → ⟪A,
A⟫ ∈ ≤fin ) |
27 | 26 | adantr 451 |
. . . . . . . 8
⊢ ((A ∈ Nn ∧ B ∈ Nn ) → ⟪A, A⟫
∈ ≤fin ) |
28 | | opkeq2 4061 |
. . . . . . . . 9
⊢ (B = A →
⟪A, B⟫ = ⟪A, A⟫) |
29 | 28 | eleq1d 2419 |
. . . . . . . 8
⊢ (B = A →
(⟪A, B⟫ ∈
≤fin ↔ ⟪A,
A⟫ ∈ ≤fin )) |
30 | 27, 29 | syl5ibrcom 213 |
. . . . . . 7
⊢ ((A ∈ Nn ∧ B ∈ Nn ) → (B =
A → ⟪A, B⟫
∈ ≤fin )) |
31 | 30 | adantr 451 |
. . . . . 6
⊢ (((A ∈ Nn ∧ B ∈ Nn ) ∧ B ≠ ∅) →
(B = A
→ ⟪A, B⟫ ∈
≤fin )) |
32 | | ltlefin 4469 |
. . . . . . 7
⊢ ((A ∈ Nn ∧ B ∈ Nn ) → (⟪A, B⟫
∈ <fin → ⟪A, B⟫
∈ ≤fin )) |
33 | 32 | adantr 451 |
. . . . . 6
⊢ (((A ∈ Nn ∧ B ∈ Nn ) ∧ B ≠ ∅) →
(⟪A, B⟫ ∈
<fin → ⟪A,
B⟫ ∈ ≤fin )) |
34 | 31, 33 | jaod 369 |
. . . . 5
⊢ (((A ∈ Nn ∧ B ∈ Nn ) ∧ B ≠ ∅) →
((B = A
∨ ⟪A, B⟫
∈ <fin ) →
⟪A, B⟫ ∈
≤fin )) |
35 | 25, 34 | syld 40 |
. . . 4
⊢ (((A ∈ Nn ∧ B ∈ Nn ) ∧ B ≠ ∅) →
(¬ ⟪B, A⟫ ∈
<fin → ⟪A,
B⟫ ∈ ≤fin )) |
36 | 35 | expcom 424 |
. . 3
⊢ (B ≠ ∅ →
((A ∈
Nn ∧ B ∈ Nn ) → (¬ ⟪B, A⟫
∈ <fin → ⟪A, B⟫
∈ ≤fin ))) |
37 | 17, 36 | pm2.61ine 2593 |
. 2
⊢ ((A ∈ Nn ∧ B ∈ Nn ) → (¬ ⟪B, A⟫
∈ <fin → ⟪A, B⟫
∈ ≤fin )) |
38 | 8, 37 | impbid 183 |
1
⊢ ((A ∈ Nn ∧ B ∈ Nn ) → (⟪A, B⟫
∈ ≤fin ↔ ¬
⟪B, A⟫ ∈
<fin )) |