NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  lenltfin GIF version

Theorem lenltfin 4470
Description: Less than or equal is the same as negated less than. (Contributed by SF, 2-Feb-2015.)
Assertion
Ref Expression
lenltfin ((A Nn B Nn ) → (⟪A, Bfin ↔ ¬ ⟪B, A <fin ))

Proof of Theorem lenltfin
StepHypRef Expression
1 ltfinirr 4458 . . . . . 6 (A Nn → ¬ ⟪A, A <fin )
21adantr 451 . . . . 5 ((A Nn B Nn ) → ¬ ⟪A, A <fin )
32adantr 451 . . . 4 (((A Nn B Nn ) A, Bfin ) → ¬ ⟪A, A <fin )
4 leltfintr 4459 . . . . . 6 ((A Nn B Nn A Nn ) → ((⟪A, Bfin B, A <fin ) → ⟪A, A <fin ))
543anidm13 1240 . . . . 5 ((A Nn B Nn ) → ((⟪A, Bfin B, A <fin ) → ⟪A, A <fin ))
65expdimp 426 . . . 4 (((A Nn B Nn ) A, Bfin ) → (⟪B, A <fin → ⟪A, A <fin ))
73, 6mtod 168 . . 3 (((A Nn B Nn ) A, Bfin ) → ¬ ⟪B, A <fin )
87ex 423 . 2 ((A Nn B Nn ) → (⟪A, Bfin → ¬ ⟪B, A <fin ))
9 nulge 4457 . . . . . 6 (( Nn A Nn ) → ⟪A, fin )
109ancoms 439 . . . . 5 ((A Nn Nn ) → ⟪A, fin )
11 eleq1 2413 . . . . . . 7 (B = → (B Nn Nn ))
1211anbi2d 684 . . . . . 6 (B = → ((A Nn B Nn ) ↔ (A Nn Nn )))
13 opkeq2 4061 . . . . . . 7 (B = → ⟪A, B⟫ = ⟪A, ⟫)
1413eleq1d 2419 . . . . . 6 (B = → (⟪A, Bfin ↔ ⟪A, fin ))
1512, 14imbi12d 311 . . . . 5 (B = → (((A Nn B Nn ) → ⟪A, Bfin ) ↔ ((A Nn Nn ) → ⟪A, fin )))
1610, 15mpbiri 224 . . . 4 (B = → ((A Nn B Nn ) → ⟪A, Bfin ))
1716a1dd 42 . . 3 (B = → ((A Nn B Nn ) → (¬ ⟪B, A <fin → ⟪A, Bfin )))
18 simplr 731 . . . . . . . 8 (((A Nn B Nn ) B) → B Nn )
19 simpll 730 . . . . . . . 8 (((A Nn B Nn ) B) → A Nn )
20 simpr 447 . . . . . . . 8 (((A Nn B Nn ) B) → B)
21 ltfintri 4467 . . . . . . . 8 ((B Nn A Nn B) → (⟪B, A <fin B = A A, B <fin ))
2218, 19, 20, 21syl3anc 1182 . . . . . . 7 (((A Nn B Nn ) B) → (⟪B, A <fin B = A A, B <fin ))
23 3orass 937 . . . . . . 7 ((⟪B, A <fin B = A A, B <fin ) ↔ (⟪B, A <fin (B = A A, B <fin )))
2422, 23sylib 188 . . . . . 6 (((A Nn B Nn ) B) → (⟪B, A <fin (B = A A, B <fin )))
2524ord 366 . . . . 5 (((A Nn B Nn ) B) → (¬ ⟪B, A <fin → (B = A A, B <fin )))
26 lefinrflx 4468 . . . . . . . . 9 (A Nn → ⟪A, Afin )
2726adantr 451 . . . . . . . 8 ((A Nn B Nn ) → ⟪A, Afin )
28 opkeq2 4061 . . . . . . . . 9 (B = A → ⟪A, B⟫ = ⟪A, A⟫)
2928eleq1d 2419 . . . . . . . 8 (B = A → (⟪A, Bfin ↔ ⟪A, Afin ))
3027, 29syl5ibrcom 213 . . . . . . 7 ((A Nn B Nn ) → (B = A → ⟪A, Bfin ))
3130adantr 451 . . . . . 6 (((A Nn B Nn ) B) → (B = A → ⟪A, Bfin ))
32 ltlefin 4469 . . . . . . 7 ((A Nn B Nn ) → (⟪A, B <fin → ⟪A, Bfin ))
3332adantr 451 . . . . . 6 (((A Nn B Nn ) B) → (⟪A, B <fin → ⟪A, Bfin ))
3431, 33jaod 369 . . . . 5 (((A Nn B Nn ) B) → ((B = A A, B <fin ) → ⟪A, Bfin ))
3525, 34syld 40 . . . 4 (((A Nn B Nn ) B) → (¬ ⟪B, A <fin → ⟪A, Bfin ))
3635expcom 424 . . 3 (B → ((A Nn B Nn ) → (¬ ⟪B, A <fin → ⟪A, Bfin )))
3717, 36pm2.61ine 2593 . 2 ((A Nn B Nn ) → (¬ ⟪B, A <fin → ⟪A, Bfin ))
388, 37impbid 183 1 ((A Nn B Nn ) → (⟪A, Bfin ↔ ¬ ⟪B, A <fin ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wo 357   wa 358   w3o 933   = wceq 1642   wcel 1710  wne 2517  c0 3551  copk 4058   Nn cnnc 4374  fin clefin 4433   <fin cltfin 4434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-0c 4378  df-addc 4379  df-nnc 4380  df-lefin 4441  df-ltfin 4442
This theorem is referenced by:  tfinlefin  4503  vfinspsslem1  4551
  Copyright terms: Public domain W3C validator