| Step | Hyp | Ref
 | Expression | 
| 1 |   | complab 3525 | 
. . . . . . 7
⊢  ∼ {n ∣ n = ∅} =
{n ∣
¬ n = ∅} | 
| 2 |   | df-sn 3742 | 
. . . . . . . 8
⊢ {∅} = {n ∣ n = ∅} | 
| 3 | 2 | compleqi 3245 | 
. . . . . . 7
⊢  ∼ {∅} = ∼ {n
∣ n =
∅} | 
| 4 |   | df-ne 2519 | 
. . . . . . . 8
⊢ (n ≠ ∅ ↔
¬ n = ∅) | 
| 5 | 4 | abbii 2466 | 
. . . . . . 7
⊢ {n ∣ n ≠ ∅} =
{n ∣
¬ n = ∅} | 
| 6 | 1, 3, 5 | 3eqtr4ri 2384 | 
. . . . . 6
⊢ {n ∣ n ≠ ∅} = ∼
{∅} | 
| 7 |   | snex 4112 | 
. . . . . . 7
⊢ {∅} ∈
V | 
| 8 | 7 | complex 4105 | 
. . . . . 6
⊢  ∼ {∅} ∈
V | 
| 9 | 6, 8 | eqeltri 2423 | 
. . . . 5
⊢ {n ∣ n ≠ ∅} ∈ V | 
| 10 |   | neeq1 2525 | 
. . . . 5
⊢ (n = 0c → (n ≠ ∅ ↔
0c ≠ ∅)) | 
| 11 |   | neeq1 2525 | 
. . . . 5
⊢ (n = m →
(n ≠ ∅ ↔ m
≠ ∅)) | 
| 12 |   | neeq1 2525 | 
. . . . 5
⊢ (n = (m
+c 1c) → (n ≠ ∅ ↔
(m +c
1c) ≠ ∅)) | 
| 13 |   | neeq1 2525 | 
. . . . 5
⊢ (n = x →
(n ≠ ∅ ↔ x
≠ ∅)) | 
| 14 |   | nulel0c 4423 | 
. . . . . 6
⊢ ∅ ∈
0c | 
| 15 |   | ne0i 3557 | 
. . . . . 6
⊢ (∅ ∈
0c → 0c ≠ ∅) | 
| 16 | 14, 15 | ax-mp 5 | 
. . . . 5
⊢
0c ≠ ∅ | 
| 17 |   | n0 3560 | 
. . . . . 6
⊢ (m ≠ ∅ ↔
∃a
a ∈
m) | 
| 18 |   | vinf 4556 | 
. . . . . . . . . . . . . . 15
⊢  ¬ V ∈ Fin | 
| 19 |   | elunii 3897 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((V ∈ m ∧ m ∈ Nn ) → V ∈ ∪ Nn ) | 
| 20 | 19 | ancoms 439 | 
. . . . . . . . . . . . . . . . 17
⊢ ((m ∈ Nn ∧ V ∈ m) → V
∈ ∪ Nn ) | 
| 21 |   | df-fin 4381 | 
. . . . . . . . . . . . . . . . 17
⊢  Fin = ∪ Nn | 
| 22 | 20, 21 | syl6eleqr 2444 | 
. . . . . . . . . . . . . . . 16
⊢ ((m ∈ Nn ∧ V ∈ m) → V
∈ Fin
) | 
| 23 | 22 | ex 423 | 
. . . . . . . . . . . . . . 15
⊢ (m ∈ Nn → (V ∈
m → V ∈ Fin
)) | 
| 24 | 18, 23 | mtoi 169 | 
. . . . . . . . . . . . . 14
⊢ (m ∈ Nn → ¬ V ∈
m) | 
| 25 |   | eleq1 2413 | 
. . . . . . . . . . . . . . 15
⊢ (a = V → (a
∈ m
↔ V ∈ m)) | 
| 26 | 25 | notbid 285 | 
. . . . . . . . . . . . . 14
⊢ (a = V → (¬ a ∈ m ↔ ¬ V ∈
m)) | 
| 27 | 24, 26 | syl5ibrcom 213 | 
. . . . . . . . . . . . 13
⊢ (m ∈ Nn → (a = V
→ ¬ a ∈ m)) | 
| 28 | 27 | necon2ad 2565 | 
. . . . . . . . . . . 12
⊢ (m ∈ Nn → (a ∈ m →
a ≠ V)) | 
| 29 | 28 | imp 418 | 
. . . . . . . . . . 11
⊢ ((m ∈ Nn ∧ a ∈ m) → a ≠
V) | 
| 30 |   | compleqb 3544 | 
. . . . . . . . . . . 12
⊢ (a = V ↔ ∼ a = ∼ V) | 
| 31 | 30 | necon3bii 2549 | 
. . . . . . . . . . 11
⊢ (a ≠ V ↔ ∼ a ≠ ∼ V) | 
| 32 | 29, 31 | sylib 188 | 
. . . . . . . . . 10
⊢ ((m ∈ Nn ∧ a ∈ m) → ∼ a ≠ ∼ V) | 
| 33 |   | complV 4071 | 
. . . . . . . . . . 11
⊢  ∼ V = ∅ | 
| 34 | 33 | neeq2i 2528 | 
. . . . . . . . . 10
⊢ ( ∼ a ≠ ∼ V ↔ ∼ a ≠ ∅) | 
| 35 | 32, 34 | sylib 188 | 
. . . . . . . . 9
⊢ ((m ∈ Nn ∧ a ∈ m) → ∼ a ≠ ∅) | 
| 36 |   | n0 3560 | 
. . . . . . . . . 10
⊢ ( ∼ a ≠ ∅ ↔
∃x
x ∈ ∼
a) | 
| 37 |   | vex 2863 | 
. . . . . . . . . . . . . . 15
⊢ x ∈
V | 
| 38 | 37 | elcompl 3226 | 
. . . . . . . . . . . . . 14
⊢ (x ∈ ∼ a ↔ ¬ x
∈ a) | 
| 39 | 37 | elsuci 4415 | 
. . . . . . . . . . . . . . 15
⊢ ((a ∈ m ∧ ¬ x ∈ a) → (a
∪ {x}) ∈ (m
+c 1c)) | 
| 40 |   | ne0i 3557 | 
. . . . . . . . . . . . . . 15
⊢ ((a ∪ {x})
∈ (m
+c 1c) → (m +c 1c) ≠
∅) | 
| 41 | 39, 40 | syl 15 | 
. . . . . . . . . . . . . 14
⊢ ((a ∈ m ∧ ¬ x ∈ a) → (m
+c 1c) ≠ ∅) | 
| 42 | 38, 41 | sylan2b 461 | 
. . . . . . . . . . . . 13
⊢ ((a ∈ m ∧ x ∈ ∼ a) → (m
+c 1c) ≠ ∅) | 
| 43 | 42 | ex 423 | 
. . . . . . . . . . . 12
⊢ (a ∈ m → (x
∈ ∼ a
→ (m +c
1c) ≠ ∅)) | 
| 44 | 43 | adantl 452 | 
. . . . . . . . . . 11
⊢ ((m ∈ Nn ∧ a ∈ m) → (x
∈ ∼ a
→ (m +c
1c) ≠ ∅)) | 
| 45 | 44 | exlimdv 1636 | 
. . . . . . . . . 10
⊢ ((m ∈ Nn ∧ a ∈ m) → (∃x x ∈ ∼ a → (m
+c 1c) ≠ ∅)) | 
| 46 | 36, 45 | syl5bi 208 | 
. . . . . . . . 9
⊢ ((m ∈ Nn ∧ a ∈ m) → ( ∼ a ≠ ∅ →
(m +c
1c) ≠ ∅)) | 
| 47 | 35, 46 | mpd 14 | 
. . . . . . . 8
⊢ ((m ∈ Nn ∧ a ∈ m) → (m
+c 1c) ≠ ∅) | 
| 48 | 47 | ex 423 | 
. . . . . . 7
⊢ (m ∈ Nn → (a ∈ m →
(m +c
1c) ≠ ∅)) | 
| 49 | 48 | exlimdv 1636 | 
. . . . . 6
⊢ (m ∈ Nn → (∃a a ∈ m →
(m +c
1c) ≠ ∅)) | 
| 50 | 17, 49 | syl5bi 208 | 
. . . . 5
⊢ (m ∈ Nn → (m ≠
∅ → (m +c 1c) ≠
∅)) | 
| 51 | 9, 10, 11, 12, 13, 16, 50 | finds 4412 | 
. . . 4
⊢ (x ∈ Nn → x ≠
∅) | 
| 52 | 51 | neneqd 2533 | 
. . 3
⊢ (x ∈ Nn → ¬ x =
∅) | 
| 53 | 52 | nrex 2717 | 
. 2
⊢  ¬ ∃x ∈ Nn x = ∅ | 
| 54 |   | risset 2662 | 
. 2
⊢ (∅ ∈ Nn ↔ ∃x ∈ Nn x = ∅) | 
| 55 | 53, 54 | mtbir 290 | 
1
⊢  ¬ ∅ ∈ Nn |