| Step | Hyp | Ref
| Expression |
| 1 | | complab 3525 |
. . . . . . 7
⊢ ∼ {n ∣ n = ∅} =
{n ∣
¬ n = ∅} |
| 2 | | df-sn 3742 |
. . . . . . . 8
⊢ {∅} = {n ∣ n = ∅} |
| 3 | 2 | compleqi 3245 |
. . . . . . 7
⊢ ∼ {∅} = ∼ {n
∣ n =
∅} |
| 4 | | df-ne 2519 |
. . . . . . . 8
⊢ (n ≠ ∅ ↔
¬ n = ∅) |
| 5 | 4 | abbii 2466 |
. . . . . . 7
⊢ {n ∣ n ≠ ∅} =
{n ∣
¬ n = ∅} |
| 6 | 1, 3, 5 | 3eqtr4ri 2384 |
. . . . . 6
⊢ {n ∣ n ≠ ∅} = ∼
{∅} |
| 7 | | snex 4112 |
. . . . . . 7
⊢ {∅} ∈
V |
| 8 | 7 | complex 4105 |
. . . . . 6
⊢ ∼ {∅} ∈
V |
| 9 | 6, 8 | eqeltri 2423 |
. . . . 5
⊢ {n ∣ n ≠ ∅} ∈ V |
| 10 | | neeq1 2525 |
. . . . 5
⊢ (n = 0c → (n ≠ ∅ ↔
0c ≠ ∅)) |
| 11 | | neeq1 2525 |
. . . . 5
⊢ (n = m →
(n ≠ ∅ ↔ m
≠ ∅)) |
| 12 | | neeq1 2525 |
. . . . 5
⊢ (n = (m
+c 1c) → (n ≠ ∅ ↔
(m +c
1c) ≠ ∅)) |
| 13 | | neeq1 2525 |
. . . . 5
⊢ (n = x →
(n ≠ ∅ ↔ x
≠ ∅)) |
| 14 | | nulel0c 4423 |
. . . . . 6
⊢ ∅ ∈
0c |
| 15 | | ne0i 3557 |
. . . . . 6
⊢ (∅ ∈
0c → 0c ≠ ∅) |
| 16 | 14, 15 | ax-mp 5 |
. . . . 5
⊢
0c ≠ ∅ |
| 17 | | n0 3560 |
. . . . . 6
⊢ (m ≠ ∅ ↔
∃a
a ∈
m) |
| 18 | | vinf 4556 |
. . . . . . . . . . . . . . 15
⊢ ¬ V ∈ Fin |
| 19 | | elunii 3897 |
. . . . . . . . . . . . . . . . . 18
⊢ ((V ∈ m ∧ m ∈ Nn ) → V ∈ ∪ Nn ) |
| 20 | 19 | ancoms 439 |
. . . . . . . . . . . . . . . . 17
⊢ ((m ∈ Nn ∧ V ∈ m) → V
∈ ∪ Nn ) |
| 21 | | df-fin 4381 |
. . . . . . . . . . . . . . . . 17
⊢ Fin = ∪ Nn |
| 22 | 20, 21 | syl6eleqr 2444 |
. . . . . . . . . . . . . . . 16
⊢ ((m ∈ Nn ∧ V ∈ m) → V
∈ Fin
) |
| 23 | 22 | ex 423 |
. . . . . . . . . . . . . . 15
⊢ (m ∈ Nn → (V ∈
m → V ∈ Fin
)) |
| 24 | 18, 23 | mtoi 169 |
. . . . . . . . . . . . . 14
⊢ (m ∈ Nn → ¬ V ∈
m) |
| 25 | | eleq1 2413 |
. . . . . . . . . . . . . . 15
⊢ (a = V → (a
∈ m
↔ V ∈ m)) |
| 26 | 25 | notbid 285 |
. . . . . . . . . . . . . 14
⊢ (a = V → (¬ a ∈ m ↔ ¬ V ∈
m)) |
| 27 | 24, 26 | syl5ibrcom 213 |
. . . . . . . . . . . . 13
⊢ (m ∈ Nn → (a = V
→ ¬ a ∈ m)) |
| 28 | 27 | necon2ad 2565 |
. . . . . . . . . . . 12
⊢ (m ∈ Nn → (a ∈ m →
a ≠ V)) |
| 29 | 28 | imp 418 |
. . . . . . . . . . 11
⊢ ((m ∈ Nn ∧ a ∈ m) → a ≠
V) |
| 30 | | compleqb 3544 |
. . . . . . . . . . . 12
⊢ (a = V ↔ ∼ a = ∼ V) |
| 31 | 30 | necon3bii 2549 |
. . . . . . . . . . 11
⊢ (a ≠ V ↔ ∼ a ≠ ∼ V) |
| 32 | 29, 31 | sylib 188 |
. . . . . . . . . 10
⊢ ((m ∈ Nn ∧ a ∈ m) → ∼ a ≠ ∼ V) |
| 33 | | complV 4071 |
. . . . . . . . . . 11
⊢ ∼ V = ∅ |
| 34 | 33 | neeq2i 2528 |
. . . . . . . . . 10
⊢ ( ∼ a ≠ ∼ V ↔ ∼ a ≠ ∅) |
| 35 | 32, 34 | sylib 188 |
. . . . . . . . 9
⊢ ((m ∈ Nn ∧ a ∈ m) → ∼ a ≠ ∅) |
| 36 | | n0 3560 |
. . . . . . . . . 10
⊢ ( ∼ a ≠ ∅ ↔
∃x
x ∈ ∼
a) |
| 37 | | vex 2863 |
. . . . . . . . . . . . . . 15
⊢ x ∈
V |
| 38 | 37 | elcompl 3226 |
. . . . . . . . . . . . . 14
⊢ (x ∈ ∼ a ↔ ¬ x
∈ a) |
| 39 | 37 | elsuci 4415 |
. . . . . . . . . . . . . . 15
⊢ ((a ∈ m ∧ ¬ x ∈ a) → (a
∪ {x}) ∈ (m
+c 1c)) |
| 40 | | ne0i 3557 |
. . . . . . . . . . . . . . 15
⊢ ((a ∪ {x})
∈ (m
+c 1c) → (m +c 1c) ≠
∅) |
| 41 | 39, 40 | syl 15 |
. . . . . . . . . . . . . 14
⊢ ((a ∈ m ∧ ¬ x ∈ a) → (m
+c 1c) ≠ ∅) |
| 42 | 38, 41 | sylan2b 461 |
. . . . . . . . . . . . 13
⊢ ((a ∈ m ∧ x ∈ ∼ a) → (m
+c 1c) ≠ ∅) |
| 43 | 42 | ex 423 |
. . . . . . . . . . . 12
⊢ (a ∈ m → (x
∈ ∼ a
→ (m +c
1c) ≠ ∅)) |
| 44 | 43 | adantl 452 |
. . . . . . . . . . 11
⊢ ((m ∈ Nn ∧ a ∈ m) → (x
∈ ∼ a
→ (m +c
1c) ≠ ∅)) |
| 45 | 44 | exlimdv 1636 |
. . . . . . . . . 10
⊢ ((m ∈ Nn ∧ a ∈ m) → (∃x x ∈ ∼ a → (m
+c 1c) ≠ ∅)) |
| 46 | 36, 45 | syl5bi 208 |
. . . . . . . . 9
⊢ ((m ∈ Nn ∧ a ∈ m) → ( ∼ a ≠ ∅ →
(m +c
1c) ≠ ∅)) |
| 47 | 35, 46 | mpd 14 |
. . . . . . . 8
⊢ ((m ∈ Nn ∧ a ∈ m) → (m
+c 1c) ≠ ∅) |
| 48 | 47 | ex 423 |
. . . . . . 7
⊢ (m ∈ Nn → (a ∈ m →
(m +c
1c) ≠ ∅)) |
| 49 | 48 | exlimdv 1636 |
. . . . . 6
⊢ (m ∈ Nn → (∃a a ∈ m →
(m +c
1c) ≠ ∅)) |
| 50 | 17, 49 | syl5bi 208 |
. . . . 5
⊢ (m ∈ Nn → (m ≠
∅ → (m +c 1c) ≠
∅)) |
| 51 | 9, 10, 11, 12, 13, 16, 50 | finds 4412 |
. . . 4
⊢ (x ∈ Nn → x ≠
∅) |
| 52 | 51 | neneqd 2533 |
. . 3
⊢ (x ∈ Nn → ¬ x =
∅) |
| 53 | 52 | nrex 2717 |
. 2
⊢ ¬ ∃x ∈ Nn x = ∅ |
| 54 | | risset 2662 |
. 2
⊢ (∅ ∈ Nn ↔ ∃x ∈ Nn x = ∅) |
| 55 | 53, 54 | mtbir 290 |
1
⊢ ¬ ∅ ∈ Nn |