New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > vfinncvntsp | GIF version |
Description: If the universe is finite, then its size is not a T raising of an element of Spfin. Corollary of theorem X.1.58 of [Rosser] p. 534. (Contributed by SF, 27-Jan-2015.) |
Ref | Expression |
---|---|
vfinncvntsp | ⊢ (V ∈ Fin → ¬ Ncfin V ∈ {a ∣ ∃x ∈ Spfin a = Tfin x}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vfinspnn 4542 | . . . . . . . 8 ⊢ (V ∈ Fin → Spfin ⊆ ( Nn ∖ {∅})) | |
2 | difss 3394 | . . . . . . . 8 ⊢ ( Nn ∖ {∅}) ⊆ Nn | |
3 | 1, 2 | syl6ss 3285 | . . . . . . 7 ⊢ (V ∈ Fin → Spfin ⊆ Nn ) |
4 | 3 | sselda 3274 | . . . . . 6 ⊢ ((V ∈ Fin ∧ x ∈ Spfin ) → x ∈ Nn ) |
5 | vfinncvntnn 4549 | . . . . . 6 ⊢ ((V ∈ Fin ∧ x ∈ Nn ) → Tfin x ≠ Ncfin V) | |
6 | 4, 5 | syldan 456 | . . . . 5 ⊢ ((V ∈ Fin ∧ x ∈ Spfin ) → Tfin x ≠ Ncfin V) |
7 | 6 | necomd 2600 | . . . 4 ⊢ ((V ∈ Fin ∧ x ∈ Spfin ) → Ncfin V ≠ Tfin x) |
8 | df-ne 2519 | . . . 4 ⊢ ( Ncfin V ≠ Tfin x ↔ ¬ Ncfin V = Tfin x) | |
9 | 7, 8 | sylib 188 | . . 3 ⊢ ((V ∈ Fin ∧ x ∈ Spfin ) → ¬ Ncfin V = Tfin x) |
10 | 9 | nrexdv 2718 | . 2 ⊢ (V ∈ Fin → ¬ ∃x ∈ Spfin Ncfin V = Tfin x) |
11 | ncfinex 4473 | . . 3 ⊢ Ncfin V ∈ V | |
12 | eqeq1 2359 | . . . 4 ⊢ (a = Ncfin V → (a = Tfin x ↔ Ncfin V = Tfin x)) | |
13 | 12 | rexbidv 2636 | . . 3 ⊢ (a = Ncfin V → (∃x ∈ Spfin a = Tfin x ↔ ∃x ∈ Spfin Ncfin V = Tfin x)) |
14 | 11, 13 | elab 2986 | . 2 ⊢ ( Ncfin V ∈ {a ∣ ∃x ∈ Spfin a = Tfin x} ↔ ∃x ∈ Spfin Ncfin V = Tfin x) |
15 | 10, 14 | sylnibr 296 | 1 ⊢ (V ∈ Fin → ¬ Ncfin V ∈ {a ∣ ∃x ∈ Spfin a = Tfin x}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 = wceq 1642 ∈ wcel 1710 {cab 2339 ≠ wne 2517 ∃wrex 2616 Vcvv 2860 ∖ cdif 3207 ∅c0 3551 {csn 3738 Nn cnnc 4374 Fin cfin 4377 Ncfin cncfin 4435 Tfin ctfin 4436 Spfin cspfin 4440 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-sfin 4447 df-spfin 4448 |
This theorem is referenced by: vfinncsp 4555 |
Copyright terms: Public domain | W3C validator |