![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > vfinncvntsp | GIF version |
Description: If the universe is finite, then its size is not a T raising of an element of Spfin. Corollary of theorem X.1.58 of [Rosser] p. 534. (Contributed by SF, 27-Jan-2015.) |
Ref | Expression |
---|---|
vfinncvntsp | ⊢ (V ∈ Fin → ¬ Ncfin V ∈ {a ∣ ∃x ∈ Spfin a = Tfin x}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vfinspnn 4541 | . . . . . . . 8 ⊢ (V ∈ Fin → Spfin ⊆ ( Nn ∖ {∅})) | |
2 | difss 3393 | . . . . . . . 8 ⊢ ( Nn ∖ {∅}) ⊆ Nn | |
3 | 1, 2 | syl6ss 3284 | . . . . . . 7 ⊢ (V ∈ Fin → Spfin ⊆ Nn ) |
4 | 3 | sselda 3273 | . . . . . 6 ⊢ ((V ∈ Fin ∧ x ∈ Spfin ) → x ∈ Nn ) |
5 | vfinncvntnn 4548 | . . . . . 6 ⊢ ((V ∈ Fin ∧ x ∈ Nn ) → Tfin x ≠ Ncfin V) | |
6 | 4, 5 | syldan 456 | . . . . 5 ⊢ ((V ∈ Fin ∧ x ∈ Spfin ) → Tfin x ≠ Ncfin V) |
7 | 6 | necomd 2599 | . . . 4 ⊢ ((V ∈ Fin ∧ x ∈ Spfin ) → Ncfin V ≠ Tfin x) |
8 | df-ne 2518 | . . . 4 ⊢ ( Ncfin V ≠ Tfin x ↔ ¬ Ncfin V = Tfin x) | |
9 | 7, 8 | sylib 188 | . . 3 ⊢ ((V ∈ Fin ∧ x ∈ Spfin ) → ¬ Ncfin V = Tfin x) |
10 | 9 | nrexdv 2717 | . 2 ⊢ (V ∈ Fin → ¬ ∃x ∈ Spfin Ncfin V = Tfin x) |
11 | ncfinex 4472 | . . 3 ⊢ Ncfin V ∈ V | |
12 | eqeq1 2359 | . . . 4 ⊢ (a = Ncfin V → (a = Tfin x ↔ Ncfin V = Tfin x)) | |
13 | 12 | rexbidv 2635 | . . 3 ⊢ (a = Ncfin V → (∃x ∈ Spfin a = Tfin x ↔ ∃x ∈ Spfin Ncfin V = Tfin x)) |
14 | 11, 13 | elab 2985 | . 2 ⊢ ( Ncfin V ∈ {a ∣ ∃x ∈ Spfin a = Tfin x} ↔ ∃x ∈ Spfin Ncfin V = Tfin x) |
15 | 10, 14 | sylnibr 296 | 1 ⊢ (V ∈ Fin → ¬ Ncfin V ∈ {a ∣ ∃x ∈ Spfin a = Tfin x}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 = wceq 1642 ∈ wcel 1710 {cab 2339 ≠ wne 2516 ∃wrex 2615 Vcvv 2859 ∖ cdif 3206 ∅c0 3550 {csn 3737 Nn cnnc 4373 Fin cfin 4376 Ncfin cncfin 4434 Tfin ctfin 4435 Spfin cspfin 4439 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-sfin 4446 df-spfin 4447 |
This theorem is referenced by: vfinncsp 4554 |
Copyright terms: Public domain | W3C validator |