Step | Hyp | Ref
| Expression |
1 | | nulnnn 4557 |
. . . . 5
⊢ ¬ ∅ ∈ Nn |
2 | | eleq1 2413 |
. . . . 5
⊢ (A = ∅ →
(A ∈
Nn ↔ ∅
∈ Nn
)) |
3 | 1, 2 | mtbiri 294 |
. . . 4
⊢ (A = ∅ →
¬ A ∈
Nn ) |
4 | 3 | necon2ai 2562 |
. . 3
⊢ (A ∈ Nn → A ≠
∅) |
5 | | n0 3560 |
. . 3
⊢ (A ≠ ∅ ↔
∃n
n ∈
A) |
6 | 4, 5 | sylib 188 |
. 2
⊢ (A ∈ Nn → ∃n n ∈ A) |
7 | | eleq2 2414 |
. . . . . . . . 9
⊢ (a = A →
(n ∈
a ↔ n ∈ A)) |
8 | 7 | rspcev 2956 |
. . . . . . . 8
⊢ ((A ∈ Nn ∧ n ∈ A) → ∃a ∈ Nn n ∈ a) |
9 | | elfin 4421 |
. . . . . . . 8
⊢ (n ∈ Fin ↔ ∃a ∈ Nn n ∈ a) |
10 | 8, 9 | sylibr 203 |
. . . . . . 7
⊢ ((A ∈ Nn ∧ n ∈ A) → n
∈ Fin
) |
11 | | pw1fin 6170 |
. . . . . . 7
⊢ (n ∈ Fin → ℘1n ∈ Fin ) |
12 | 10, 11 | syl 15 |
. . . . . 6
⊢ ((A ∈ Nn ∧ n ∈ A) → ℘1n ∈ Fin ) |
13 | | elfin 4421 |
. . . . . 6
⊢ (℘1n ∈ Fin ↔ ∃m ∈ Nn ℘1n ∈ m) |
14 | 12, 13 | sylib 188 |
. . . . 5
⊢ ((A ∈ Nn ∧ n ∈ A) → ∃m ∈ Nn ℘1n ∈ m) |
15 | | nnnc 6147 |
. . . . . . . . . . . 12
⊢ (A ∈ Nn → A ∈ NC
) |
16 | | tccl 6161 |
. . . . . . . . . . . 12
⊢ (A ∈ NC → Tc
A ∈ NC ) |
17 | 15, 16 | syl 15 |
. . . . . . . . . . 11
⊢ (A ∈ Nn → Tc
A ∈ NC ) |
18 | 17 | ad2antrr 706 |
. . . . . . . . . 10
⊢ (((A ∈ Nn ∧ m ∈ Nn ) ∧ (n ∈ A ∧ ℘1n ∈ m)) → Tc A
∈ NC
) |
19 | | nnnc 6147 |
. . . . . . . . . . 11
⊢ (m ∈ Nn → m ∈ NC
) |
20 | 19 | ad2antlr 707 |
. . . . . . . . . 10
⊢ (((A ∈ Nn ∧ m ∈ Nn ) ∧ (n ∈ A ∧ ℘1n ∈ m)) → m
∈ NC
) |
21 | 15 | ad2antrr 706 |
. . . . . . . . . . 11
⊢ (((A ∈ Nn ∧ m ∈ Nn ) ∧ (n ∈ A ∧ ℘1n ∈ m)) → A
∈ NC
) |
22 | | simprl 732 |
. . . . . . . . . . 11
⊢ (((A ∈ Nn ∧ m ∈ Nn ) ∧ (n ∈ A ∧ ℘1n ∈ m)) → n
∈ A) |
23 | | pw1eltc 6163 |
. . . . . . . . . . 11
⊢ ((A ∈ NC ∧ n ∈ A) → ℘1n ∈ Tc A) |
24 | 21, 22, 23 | syl2anc 642 |
. . . . . . . . . 10
⊢ (((A ∈ Nn ∧ m ∈ Nn ) ∧ (n ∈ A ∧ ℘1n ∈ m)) → ℘1n ∈ Tc A) |
25 | | simprr 733 |
. . . . . . . . . 10
⊢ (((A ∈ Nn ∧ m ∈ Nn ) ∧ (n ∈ A ∧ ℘1n ∈ m)) → ℘1n ∈ m) |
26 | | nceleq 6150 |
. . . . . . . . . 10
⊢ ((( Tc A
∈ NC ∧ m ∈ NC ) ∧ (℘1n ∈ Tc A
∧ ℘1n ∈ m)) → Tc A =
m) |
27 | 18, 20, 24, 25, 26 | syl22anc 1183 |
. . . . . . . . 9
⊢ (((A ∈ Nn ∧ m ∈ Nn ) ∧ (n ∈ A ∧ ℘1n ∈ m)) → Tc A =
m) |
28 | | simplr 731 |
. . . . . . . . 9
⊢ (((A ∈ Nn ∧ m ∈ Nn ) ∧ (n ∈ A ∧ ℘1n ∈ m)) → m
∈ Nn
) |
29 | 27, 28 | eqeltrd 2427 |
. . . . . . . 8
⊢ (((A ∈ Nn ∧ m ∈ Nn ) ∧ (n ∈ A ∧ ℘1n ∈ m)) → Tc A
∈ Nn
) |
30 | 29 | expr 598 |
. . . . . . 7
⊢ (((A ∈ Nn ∧ m ∈ Nn ) ∧ n ∈ A) → (℘1n ∈ m → Tc
A ∈ Nn )) |
31 | 30 | an32s 779 |
. . . . . 6
⊢ (((A ∈ Nn ∧ n ∈ A) ∧ m ∈ Nn ) → (℘1n ∈ m → Tc
A ∈ Nn )) |
32 | 31 | rexlimdva 2739 |
. . . . 5
⊢ ((A ∈ Nn ∧ n ∈ A) → (∃m ∈ Nn ℘1n ∈ m → Tc
A ∈ Nn )) |
33 | 14, 32 | mpd 14 |
. . . 4
⊢ ((A ∈ Nn ∧ n ∈ A) → Tc
A ∈ Nn ) |
34 | 33 | ex 423 |
. . 3
⊢ (A ∈ Nn → (n ∈ A →
Tc A ∈ Nn )) |
35 | 34 | exlimdv 1636 |
. 2
⊢ (A ∈ Nn → (∃n n ∈ A →
Tc A ∈ Nn )) |
36 | 6, 35 | mpd 14 |
1
⊢ (A ∈ Nn → Tc
A ∈ Nn ) |