| Step | Hyp | Ref
| Expression |
| 1 | | nulnnn 4557 |
. . . . 5
⊢ ¬ ∅ ∈ Nn |
| 2 | | eleq1 2413 |
. . . . 5
⊢ (A = ∅ →
(A ∈
Nn ↔ ∅
∈ Nn
)) |
| 3 | 1, 2 | mtbiri 294 |
. . . 4
⊢ (A = ∅ →
¬ A ∈
Nn ) |
| 4 | 3 | necon2ai 2562 |
. . 3
⊢ (A ∈ Nn → A ≠
∅) |
| 5 | | n0 3560 |
. . 3
⊢ (A ≠ ∅ ↔
∃n
n ∈
A) |
| 6 | 4, 5 | sylib 188 |
. 2
⊢ (A ∈ Nn → ∃n n ∈ A) |
| 7 | | eleq2 2414 |
. . . . . . . . 9
⊢ (a = A →
(n ∈
a ↔ n ∈ A)) |
| 8 | 7 | rspcev 2956 |
. . . . . . . 8
⊢ ((A ∈ Nn ∧ n ∈ A) → ∃a ∈ Nn n ∈ a) |
| 9 | | elfin 4421 |
. . . . . . . 8
⊢ (n ∈ Fin ↔ ∃a ∈ Nn n ∈ a) |
| 10 | 8, 9 | sylibr 203 |
. . . . . . 7
⊢ ((A ∈ Nn ∧ n ∈ A) → n
∈ Fin
) |
| 11 | | pw1fin 6170 |
. . . . . . 7
⊢ (n ∈ Fin → ℘1n ∈ Fin ) |
| 12 | 10, 11 | syl 15 |
. . . . . 6
⊢ ((A ∈ Nn ∧ n ∈ A) → ℘1n ∈ Fin ) |
| 13 | | elfin 4421 |
. . . . . 6
⊢ (℘1n ∈ Fin ↔ ∃m ∈ Nn ℘1n ∈ m) |
| 14 | 12, 13 | sylib 188 |
. . . . 5
⊢ ((A ∈ Nn ∧ n ∈ A) → ∃m ∈ Nn ℘1n ∈ m) |
| 15 | | nnnc 6147 |
. . . . . . . . . . . 12
⊢ (A ∈ Nn → A ∈ NC
) |
| 16 | | tccl 6161 |
. . . . . . . . . . . 12
⊢ (A ∈ NC → Tc
A ∈ NC ) |
| 17 | 15, 16 | syl 15 |
. . . . . . . . . . 11
⊢ (A ∈ Nn → Tc
A ∈ NC ) |
| 18 | 17 | ad2antrr 706 |
. . . . . . . . . 10
⊢ (((A ∈ Nn ∧ m ∈ Nn ) ∧ (n ∈ A ∧ ℘1n ∈ m)) → Tc A
∈ NC
) |
| 19 | | nnnc 6147 |
. . . . . . . . . . 11
⊢ (m ∈ Nn → m ∈ NC
) |
| 20 | 19 | ad2antlr 707 |
. . . . . . . . . 10
⊢ (((A ∈ Nn ∧ m ∈ Nn ) ∧ (n ∈ A ∧ ℘1n ∈ m)) → m
∈ NC
) |
| 21 | 15 | ad2antrr 706 |
. . . . . . . . . . 11
⊢ (((A ∈ Nn ∧ m ∈ Nn ) ∧ (n ∈ A ∧ ℘1n ∈ m)) → A
∈ NC
) |
| 22 | | simprl 732 |
. . . . . . . . . . 11
⊢ (((A ∈ Nn ∧ m ∈ Nn ) ∧ (n ∈ A ∧ ℘1n ∈ m)) → n
∈ A) |
| 23 | | pw1eltc 6163 |
. . . . . . . . . . 11
⊢ ((A ∈ NC ∧ n ∈ A) → ℘1n ∈ Tc A) |
| 24 | 21, 22, 23 | syl2anc 642 |
. . . . . . . . . 10
⊢ (((A ∈ Nn ∧ m ∈ Nn ) ∧ (n ∈ A ∧ ℘1n ∈ m)) → ℘1n ∈ Tc A) |
| 25 | | simprr 733 |
. . . . . . . . . 10
⊢ (((A ∈ Nn ∧ m ∈ Nn ) ∧ (n ∈ A ∧ ℘1n ∈ m)) → ℘1n ∈ m) |
| 26 | | nceleq 6150 |
. . . . . . . . . 10
⊢ ((( Tc A
∈ NC ∧ m ∈ NC ) ∧ (℘1n ∈ Tc A
∧ ℘1n ∈ m)) → Tc A =
m) |
| 27 | 18, 20, 24, 25, 26 | syl22anc 1183 |
. . . . . . . . 9
⊢ (((A ∈ Nn ∧ m ∈ Nn ) ∧ (n ∈ A ∧ ℘1n ∈ m)) → Tc A =
m) |
| 28 | | simplr 731 |
. . . . . . . . 9
⊢ (((A ∈ Nn ∧ m ∈ Nn ) ∧ (n ∈ A ∧ ℘1n ∈ m)) → m
∈ Nn
) |
| 29 | 27, 28 | eqeltrd 2427 |
. . . . . . . 8
⊢ (((A ∈ Nn ∧ m ∈ Nn ) ∧ (n ∈ A ∧ ℘1n ∈ m)) → Tc A
∈ Nn
) |
| 30 | 29 | expr 598 |
. . . . . . 7
⊢ (((A ∈ Nn ∧ m ∈ Nn ) ∧ n ∈ A) → (℘1n ∈ m → Tc
A ∈ Nn )) |
| 31 | 30 | an32s 779 |
. . . . . 6
⊢ (((A ∈ Nn ∧ n ∈ A) ∧ m ∈ Nn ) → (℘1n ∈ m → Tc
A ∈ Nn )) |
| 32 | 31 | rexlimdva 2739 |
. . . . 5
⊢ ((A ∈ Nn ∧ n ∈ A) → (∃m ∈ Nn ℘1n ∈ m → Tc
A ∈ Nn )) |
| 33 | 14, 32 | mpd 14 |
. . . 4
⊢ ((A ∈ Nn ∧ n ∈ A) → Tc
A ∈ Nn ) |
| 34 | 33 | ex 423 |
. . 3
⊢ (A ∈ Nn → (n ∈ A →
Tc A ∈ Nn )) |
| 35 | 34 | exlimdv 1636 |
. 2
⊢ (A ∈ Nn → (∃n n ∈ A →
Tc A ∈ Nn )) |
| 36 | 6, 35 | mpd 14 |
1
⊢ (A ∈ Nn → Tc
A ∈ Nn ) |