New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfan | GIF version |
Description: If x is not free in φ and ψ, it is not free in (φ ∧ ψ). (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortned by Wolf Lammen, 2-Jan-2018.) |
Ref | Expression |
---|---|
nfan.1 | ⊢ Ⅎxφ |
nfan.2 | ⊢ Ⅎxψ |
Ref | Expression |
---|---|
nfan | ⊢ Ⅎx(φ ∧ ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfan.1 | . . . 4 ⊢ Ⅎxφ | |
2 | 1 | a1i 10 | . . 3 ⊢ ( ⊤ → Ⅎxφ) |
3 | nfan.2 | . . . 4 ⊢ Ⅎxψ | |
4 | 3 | a1i 10 | . . 3 ⊢ ( ⊤ → Ⅎxψ) |
5 | 2, 4 | nfand 1822 | . 2 ⊢ ( ⊤ → Ⅎx(φ ∧ ψ)) |
6 | 5 | trud 1323 | 1 ⊢ Ⅎx(φ ∧ ψ) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 ⊤ wtru 1316 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: nfnan 1825 nf3an 1827 hban 1828 nfbiOLD 1835 nfeqf 1958 nfald2 1972 spimt 1974 dvelimf 1997 cbval2 2004 cbvex2 2005 nfsb4t 2080 dvelimdf 2082 sbcom 2089 nfeud2 2216 mopick 2266 eupicka 2268 mopick2 2271 2eu6 2289 clelab 2473 nfel 2497 nfabd2 2507 2ralbida 2653 ralcom2 2775 reean 2777 cbvreu 2833 cbvrab 2857 ceqsex2 2895 vtocl2gaf 2921 rspce 2950 eqvincf 2967 elrabf 2993 rexab2 3003 morex 3020 reu2 3024 sbc2iegf 3112 rmo2 3131 rmo3 3133 csbiebt 3172 csbie2t 3180 cbvreucsf 3200 cbvrabcsf 3201 eluniab 3903 dfnfc2 3909 iota2 4367 ncfinraise 4481 ncfinlower 4483 nfopd 4605 nfopab 4627 cbvopab 4630 cbvopab1 4632 cbvopab2 4633 cbvopab1s 4634 nfxp 4810 opeliunxp 4820 nfco 4882 nfimad 4954 imadif 5171 nffn 5180 nff 5221 nff1 5256 nffo 5268 nff1o 5285 fun11iun 5305 nffvd 5335 fv3 5341 nfiso 5487 nfoprab 5549 cbvoprab1 5567 cbvoprab2 5568 cbvoprab12 5569 cbvoprab3 5571 mpteq12f 5655 mpt2eq123 5661 nfmpt 5671 nfmpt2 5675 cbvmpt 5676 cbvmpt2x 5678 fmpt2x 5730 |
Copyright terms: Public domain | W3C validator |