New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfan | GIF version |
Description: If x is not free in φ and ψ, it is not free in (φ ∧ ψ). (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortned by Wolf Lammen, 2-Jan-2018.) |
Ref | Expression |
---|---|
nfan.1 | ⊢ Ⅎxφ |
nfan.2 | ⊢ Ⅎxψ |
Ref | Expression |
---|---|
nfan | ⊢ Ⅎx(φ ∧ ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfan.1 | . . . 4 ⊢ Ⅎxφ | |
2 | 1 | a1i 10 | . . 3 ⊢ ( ⊤ → Ⅎxφ) |
3 | nfan.2 | . . . 4 ⊢ Ⅎxψ | |
4 | 3 | a1i 10 | . . 3 ⊢ ( ⊤ → Ⅎxψ) |
5 | 2, 4 | nfand 1822 | . 2 ⊢ ( ⊤ → Ⅎx(φ ∧ ψ)) |
6 | 5 | trud 1323 | 1 ⊢ Ⅎx(φ ∧ ψ) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 ⊤ wtru 1316 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: nfnan 1825 nf3an 1827 hban 1828 nfbiOLD 1835 nfeqf 1958 nfald2 1972 spimt 1974 dvelimf 1997 cbval2 2004 cbvex2 2005 nfsb4t 2080 dvelimdf 2082 sbcom 2089 nfeud2 2216 mopick 2266 eupicka 2268 mopick2 2271 2eu6 2289 clelab 2474 nfel 2498 nfabd2 2508 2ralbida 2654 ralcom2 2776 reean 2778 cbvreu 2834 cbvrab 2858 ceqsex2 2896 vtocl2gaf 2922 rspce 2951 eqvincf 2968 elrabf 2994 rexab2 3004 morex 3021 reu2 3025 sbc2iegf 3113 rmo2 3132 rmo3 3134 csbiebt 3173 csbie2t 3181 cbvreucsf 3201 cbvrabcsf 3202 eluniab 3904 dfnfc2 3910 iota2 4368 ncfinraise 4482 ncfinlower 4484 nfopd 4606 nfopab 4628 cbvopab 4631 cbvopab1 4633 cbvopab2 4634 cbvopab1s 4635 nfxp 4811 opeliunxp 4821 nfco 4883 nfimad 4955 imadif 5172 nffn 5181 nff 5222 nff1 5257 nffo 5269 nff1o 5286 fun11iun 5306 nffvd 5336 fv3 5342 nfiso 5488 nfoprab 5550 cbvoprab1 5568 cbvoprab2 5569 cbvoprab12 5570 cbvoprab3 5572 mpteq12f 5656 mpt2eq123 5662 nfmpt 5672 nfmpt2 5676 cbvmpt 5677 cbvmpt2x 5679 fmpt2x 5731 |
Copyright terms: Public domain | W3C validator |