New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfaldOLD | GIF version |
Description: Obsolete proof of nfald 1852 as of 6-Jan-2018. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfald.1 | ⊢ Ⅎyφ |
nfald.2 | ⊢ (φ → Ⅎxψ) |
Ref | Expression |
---|---|
nfaldOLD | ⊢ (φ → Ⅎx∀yψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfald.1 | . . 3 ⊢ Ⅎyφ | |
2 | nfald.2 | . . 3 ⊢ (φ → Ⅎxψ) | |
3 | 1, 2 | alrimi 1765 | . 2 ⊢ (φ → ∀yℲxψ) |
4 | nfnf1 1790 | . . . 4 ⊢ ℲxℲxψ | |
5 | 4 | nfal 1842 | . . 3 ⊢ Ⅎx∀yℲxψ |
6 | nfr 1761 | . . . . 5 ⊢ (Ⅎxψ → (ψ → ∀xψ)) | |
7 | 6 | al2imi 1561 | . . . 4 ⊢ (∀yℲxψ → (∀yψ → ∀y∀xψ)) |
8 | ax-7 1734 | . . . 4 ⊢ (∀y∀xψ → ∀x∀yψ) | |
9 | 7, 8 | syl6 29 | . . 3 ⊢ (∀yℲxψ → (∀yψ → ∀x∀yψ)) |
10 | 5, 9 | nfd 1766 | . 2 ⊢ (∀yℲxψ → Ⅎx∀yψ) |
11 | 3, 10 | syl 15 | 1 ⊢ (φ → Ⅎx∀yψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |