New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfald | GIF version |
Description: If x is not free in φ, it is not free in ∀yφ. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 6-Jan-2018.) |
Ref | Expression |
---|---|
nfald.1 | ⊢ Ⅎyφ |
nfald.2 | ⊢ (φ → Ⅎxψ) |
Ref | Expression |
---|---|
nfald | ⊢ (φ → Ⅎx∀yψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfald.1 | . . 3 ⊢ Ⅎyφ | |
2 | nfald.2 | . . 3 ⊢ (φ → Ⅎxψ) | |
3 | 1, 2 | alrimi 1765 | . 2 ⊢ (φ → ∀yℲxψ) |
4 | nfnf1 1790 | . . . 4 ⊢ ℲxℲxψ | |
5 | 4 | nfal 1842 | . . 3 ⊢ Ⅎx∀yℲxψ |
6 | hba1 1786 | . . . 4 ⊢ (∀yℲxψ → ∀y∀yℲxψ) | |
7 | sp 1747 | . . . . 5 ⊢ (∀yℲxψ → Ⅎxψ) | |
8 | 7 | nfrd 1763 | . . . 4 ⊢ (∀yℲxψ → (ψ → ∀xψ)) |
9 | 6, 8 | hbald 1740 | . . 3 ⊢ (∀yℲxψ → (∀yψ → ∀x∀yψ)) |
10 | 5, 9 | nfd 1766 | . 2 ⊢ (∀yℲxψ → Ⅎx∀yψ) |
11 | 3, 10 | syl 15 | 1 ⊢ (φ → Ⅎx∀yψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
This theorem is referenced by: nfexd 1854 nfald2 1972 nfsb4t 2080 nfeqd 2504 |
Copyright terms: Public domain | W3C validator |