New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfnf1 | GIF version |
Description: x is not free in Ⅎxφ. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfnf1 | ⊢ ℲxℲxφ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nf 1545 | . 2 ⊢ (Ⅎxφ ↔ ∀x(φ → ∀xφ)) | |
2 | nfa1 1788 | . 2 ⊢ Ⅎx∀x(φ → ∀xφ) | |
3 | 1, 2 | nfxfr 1570 | 1 ⊢ ℲxℲxφ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
This theorem is referenced by: nfnd 1791 nfndOLD 1792 nfimd 1808 19.23tOLD 1819 nfald 1852 nfaldOLD 1853 spimt 1974 spimed 1977 nfnfc1 2493 sbcnestgf 3184 dfnfc2 3910 |
Copyright terms: Public domain | W3C validator |