NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfnf1 GIF version

Theorem nfnf1 1790
Description: x is not free in xφ. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfnf1 xxφ

Proof of Theorem nfnf1
StepHypRef Expression
1 df-nf 1545 . 2 (Ⅎxφx(φxφ))
2 nfa1 1788 . 2 xx(φxφ)
31, 2nfxfr 1570 1 xxφ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540  wnf 1544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-nf 1545
This theorem is referenced by:  nfnd  1791  nfndOLD  1792  nfimd  1808  19.23tOLD  1819  nfald  1852  nfaldOLD  1853  spimt  1974  spimed  1977  nfnfc1  2493  sbcnestgf  3184  dfnfc2  3910
  Copyright terms: Public domain W3C validator